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Abstract: Response Surface Methodology is widely used in the 

optimization of industrial processes and products that depend on several 

experimental variables. One of the most tested and efficient second-order 

Response Surface Methodology designs is the Box-Behnken Design. This 

research explores the efficiency of a seven-variable Box-Behnken design 

with varying center runs, on full and reduced quadratic models. Backward 

Elimination and Forward Selection techniques are employed as the variable 

selection techniques for obtaining the reduced models, based on the Akaike 

Information Criterion. Fit Statistics and Design Efficiency values are 

obtained for the reduced models and are compared with those of the full 

model. Generally, results show that the reduced quadratic models 

perform best under one center-point run, thereby making the reduced 

models the most preferred in terms of the model fit and D-efficiency. 

Comparative analysis, based on G-efficiency, reveals that the full 

quadratic model performs better than the reduced models under one 

center-point Box-Behnken design.  

 

Keywords: Response Surface Methodology, Box-Behnken Design, 
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Introduction  

Most industry sectors utilize experimental design to 

optimize products or processes. A widely used 

technique for optimizing responses is Response 

Surface Methodology, also referred to as Response 

Surface Modelling (RSM). This method investigates 

the relationship between several explanatory variables 

(independent variables) and one or more response 

variables (dependent variables), (Mahallati, 2020). 

According to Karmoker et al. (2019) the Response 

Surface Methodology in application with appropriate 

design of experiments has become broadly and 

generally employed in most industry sectors for 

formulation optimization. As in George et al. (2005) 

response surface methodology is a collection of 

mathematical and statistical techniques that is 

convenient and effective for developing, improving, 

and optimizing products and/or processes. RSM 

provides a statistical approach that can be utilized in 

optimizing the product or response by optimization of the 

operational factors. A common goal when working with 

response surface data is to optimize the response by finding 

the appropriate settings for the design (Gary, 2000).  

When optimizing a response, there may be 

complications, especially in cases where there are several 

responses. In the event of this complication, a compromise 

optimum must be sought so that the responses are good 

(Gary, 2000). The Box-Behnken Design (BBD) is one of the 

most efficient and widely used designs for response surface 

models.  A BBD utilizes three levels to each factor with just 

a few design points in comparison with the classical 3k 

factorial design. Specifically, for three factors (i.e., k = 3), 

BBD has 13 distinct design points, which is less than half the 

number of distinct design points associated with a 33 factorial 

design. For k = 4, BBD has 25 distinct design points which 

are less than one-third of the number of distinct design points 

associated with a 34 factorial design. For a design in seven 

variables, the Box-Behnken design utilizes 57 distinct design 

points while a 37 factorial design requires 2187 distinct 

design points. Due to multiple design points, the 3k factorial 

design is not regarded as an efficient design. Leiviskä (2013) 

described the Box-Behnken design as an independent 

quadratic design simply because there are no factorial or 
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fractional factorial designs embedded in the BBD. It is 

recognized as a unique three-level design because it does not 

contain any points at the vertices of the experimental region. 

Economically, this could be advantageous when the points 

on the corners of the cube represent level combinations that 

are excessively expensive, or impossible to test due to 

physical limitations. With the inclusion of the mid-level 

design point, the coefficients of a second-order model can be 

efficiently estimated (George et al., 2005).   

The statistical data due to (Kobya et al., 2014), on the 

modeling and optimization of Arsenite removal from 

groundwater using Al ball anodes by electrocoagulation 

process, is used as a case study for this study. Kobya et al. 

(2014) employed the Box-Behnken experimental design to 

investigate the impact of seven operating parameters on 

Arsenite removal efficiency. The experiment was conducted 

using 62 experimental trials, having 57 distinct design points 

and 5 replicated center-point runs. The seven operating 

variables are given as: Initial pH, Current, Operating Time, 

Size of Al Ball Anode, Initial As (III) Concentration, Height 

of Al in the Reactor, and Air Flow Rate. The relationship 

between the seven operating variables and the response was 

established using a 36-parameter full quadratic regression 

model. In some cases, a 36-parameter model can be too large 

especially when there is limited time and resources. Hence, 

it becomes necessary to consider the impact of using a 

reduced model in describing and optimizing the response 

surface. This research aims at (i) Fitting more efficient 

models with fewer parameters, using variable selection 

techniques. (ii) Comparing the fit statistics of the new 

models with those associated with the 36-parameter full 

quadratic model. (iii) Comparing D and G-efficiency 

values of the designs associated with the different models.  

The popularity of Box-Behnken design in experimental 

sciences has been well-established in different fields of 

study. Hendrick and Michel (1987) employed the Box-

Behnken design in optimization process for direct-current 

plasma system. The effect of horizontal position, vertical 

position, nebulizer pressure, and electrode sleeve pressure on 

precision, drift, and sensitivity of the copper signal were 

considered. Bosque-Sendra et al. (2001) elucidated the 

benefits of utilizing the Box-Behnken design in modelling 

second-order response surfaces. Kobya et al. (2014) utilized 

a seven-variable Box-Behnken experimental plan to model 

and optimize the removal of Arsenite from ground water. 

Aziz and Aziz (2018) utilized Box-Behnken Design in 

studying sound protection and noise absorber. In the 

optimization of chromatography, (Czyrski and Sznura, 2019) 

applied the Box-Behnken design in the utilization of High-

Performance Liquid Chromatography (HPLC) Separation of 

Fluoroquinolones. The study aimed at selecting the most 

significant factors that influenced the responses of the 

chromatographic separation viz retention time, relative 

retention time, symmetry of the peaks, tailing factor, several 

theoretical plates, Foley-Dorsey parameter, resolution factor, 

and peak width at half height. The results proved that the 

design employed was suitable. An interesting fact about the 

research work is that Box-Behnken design was used to 

address challenging chromatographic separations.  

Omoruyi et al. (2019) compared some selection 

techniques in regression analysis. The study analyzed the 

performance of four variable selection techniques in 

developing a model that adequately predicts the dependent 

variable. The variable selection techniques include the: 

Direct search method, forward selection, backward 

elimination, and the stepwise regression method. A 32-year 

economic data on Real Gross Domestic Product being the 

dependent variable was used as a measure for economic 

growth and development. Growth Market Capitalization, 

All-shares index, the Market turnover, the openness of the 

Nigerian trade economy, the value of the transaction, the total 

listing of the Nigeria stock exchange, and total new issues 

were the independent variables. The result revealed that the 

backward elimination technique performed best in a 

variable selection based on the sample collected and it 

is supported by the use of all possible combination 

techniques as a control.  

Chowdhury and Turin (2020) discussed the concept 

of variable selection strategies and demonstrated their 

importance in clinical prediction modeling. All four 

variable selection techniques namely: Backward 

elimination, forward selection, stepwise selection, and 

all subset selection were reviewed and adopting the proper 

stopping rule/selection criteria (p-values, Akaike 

information criterion, Bayesian information criterion, 

and Mallows' Cp statistic) in variable selection. The 

pros and cons of the techniques were discussed. The 

paper noted that a crucial part of prediction modeling 

is the inclusion of appropriate variables since the 

performance of the model depends on the variables that 

are ultimately included. Inaccurate results are produced 

when the proper variables are not included in the model 

and the true relationship that exist in the data between 

the selected variables and the outcome will not be 

reflected in the model. Consequently, researchers ought 

to be informed and mindful of these crucial aspects of 

prediction modeling.  

A study by Alhajabdalla et al. (2021) highlighted the 

usefulness of the Box-Behnken Design for response 

surface methodology. A BBD in three variables was used to 

detect the influence of polymer concentration (ranging from 

1-8 vol), fiber concentration (ranging from 0.01-0.08 wt%), 

and temperature (ranging from 25-80C) on fibrous 

suspension stability. Minitab statistical software was used 

in the analysis of the stability measurements. The BBD 

performed well in determining the optimum conditions 

for the stability of the fibrous suspensions. The results 

predicted by the developed model were in good agreement 

with the experimental results. The importance of BBD for 
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response surfaces involving several factors at three levels, 

coded as 1, 0, 1, was noted by Beg and Akhter (2021) in 

the development of drug and process optimization in the 

pharmaceutical industry.  

Most research has focused on either the application 

of the Box-Behnken design in the optimization of 

processes or products in a different industry sector or 

the efficiency of the Box-Behnken design in 

comparison to other response surface designs such as 

the three-level full factorial design, central composite 

design amongst others. Little emphasis has been given 

to investigating the robustness and efficiency of the 

Box-Behnken design in the face of non-standard 

(reduced) models under varying center point runs and 

that is what will be explored in this research work. This 

study will show how efficient and effective the Box-

Behnken design is under reduced models with fewer 

center point runs. This can be very much applicable in 

cases where the design has several independent 

variables. Also with limited resources, it may not be 

practicable to experiment with the full model 

parameters and all 3k design points (experimental 

runs). Consequently, the application of model 

reduction techniques for BBD with a fewer number of 

center-point runs.   

Materials and Methods  

Box and Behnken (1960) disclosed that for effective 

fitting of a second-order model, a BBD should utilize the 

mid-points of the edges as well as the center points. Hence, a 

BBD uses face points and not the extreme (corner) points, 

which are often more practicable to implement rather than 

the corner points used in Central Composite Design (CCD). 

A Box-Behnken design combined with a central composite 

design generates a three-level full factorial (Rao and Kumar, 

2012). Myers et al. (2016); Beg and Akhter (2021), helpful 

tips are given on the factorial structure of k variable Box-

Behnken design. Specifically, balanced incomplete block 

design forms the basis for the construction of the Box-

Behnken designs.  The Box-Behnken design can be 

applied to several factors ranging from three to twenty-

one (Beg and Akhter, 2021) and are generally rotatable 

or nearly rotatable. Although it is not feasible to 

graphically represent an image for a three-level array 

of seven-factor Box-Behnken Experimental Design, the 

experimental design is given by the matrix 𝐷 where each 

component represents a vector of design runs. As 

compared to the full factorial design, Box-Behnken design 

does not require several points since points and the number 

of points is chosen so that the variance of the design is about 

the same in the middle of the design as it is on the outside of 

the design. Furthermore, Box-Behnken design does not exist 

in two design variables.  

0 0 0 1 1 1 0

1 0 0 0 0 1 1

0 1 0 0 1 0 1

1 1 0 1 0 0 0

0 0 1 1 0 0 1

1 0 1 0 1 0 0

0 1 1 0 0 1 0

0 0 0 0 0 0 0

D

   
 
   
   
 
   
   
 =
   
 

   
 
 
 
 
 

 

 

Data for Box-Behnken Design in Seven Variables  

For this study, the design used is a seven-variable 

Box-Behnken design laid out in sixty-two experimental 

trials (six center point runs inclusive). Secondary data 

collected from (Kobya et al., 2014) to model and 

optimize the removal of arsenite from groundwater was 

remodeled (using fewer model coefficients) and 

analyzed for model fits and efficiencies. In this study, 

only one of the responses (removal efficiency) is 

considered. A total of seven independent factors were 

used and had three levels coded as −1, 0, and +1 (where 

-1 is the low level, 0 is the mid-level, and +1 is the high 

level). The seven independent variables are defined as:   

X1 = pH, X2 = current denoted as i(A), X3 = operating 

time denoted as tEC (min), X4 = size of anode denoted 

as dP (mm), X5 = arsenite concentration denoted as Co 

(mg/L), X6 = anode height in the reactor denoted as h 

(cm), X7 = air flow rate denoted as Qair (L/min). The 

levels of the variables in their natural units (uncoded) are 

given as follows: 

 

𝑋1: (5.5, 7.0, 8.5) 

𝑋2: (0.1, 0.3, 0.5) 

𝑋3: (8, 15, 22) 

𝑋4: (5.0, 7.5, 10) 

𝑋5: (100, 550, 1000) 

𝑋6: (2, 5, 8),  

𝑋7:  (2, 6, 10) 

 

Table 1 gives the experimental data of the independent 

variables in their natural units and Table 2 gives the 

experimental data in coded form. 

Role of Design Center Points  

Center points are experimental runs where the 

factors Xi′𝑠 are set either at the center or mid-point of 

the factor levels. This implies that the variables are set 

halfway between the low and high settings. An 

experiment can have one center point, or the data can 

be collected at the center point several times. For this 

research work, the number of center-point runs nc ≤ 6.
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Table 1: Box-behnken design in seven-variable using natural experimental data (Kobya et al., 2014) 

 Independent variables 

 ------------------------------------------------------------------------------------------------------------------------------------------ 

Run No. pH (-)  I (A)  tEC (min)  dP (mm)  Co (mg/L) H (cm)  Qair (L/min) Response Re (%) 

  1  7.0 0.3  15  5.0  1000  2  6  97.5  

  2  7.0 0.5  15  7.5  1000  5  10  99.2  

  3  5.5  0.5  15  10.0  550  5  6  92.4  

  4  7.0  0.3  15  10.0  1000  8  6  99.4  

  5  5.5  0.3  15  7.5  550  2  10  97.7  

  6  8.5  0.5  15  10.0  550  5  6  99.9  

  7  8.5  0.1  15  7.5  550  2  2  86.3  

  8  7.0  0.1  15  7.5  550  8  6  93.8  

  9  7.0  0.3  15  5.0  550  5  10  97.3  

10  8.5  0.1  15  5.0  550  5  6  85.8  

11  7.0  0.3  15  10.0  550  5  2  98.3  

12  7.0  0.5  15  7.5  1000  5  2  99.4  

13  7.0  0.3  15  5.0  1000  8  6  99.0  

14  7.0  0.3  15  7.5  550  5  6  98.9  

15  5.5  0.3  15  7.5  550  8  10  90.7  

16  7.0  0.5  22  7.5  550  8  6  99.9  

17  5.5  0.1  15  10.0  550  5  6  98.9  

18  5.5  0.3  15  7.5  550  2  2  99.8  

19  7.0  0.3  8  5.0  550  5  2  97.5  

20  7.0  0.1  22  7.5  550  8  6  96.1  

21  7.0  0.1  8  7.5  550  2  6  94.3  

22  8.5  0.3  15  7.5  550  8  2  99.4  

23  7.0  0.1  15  7.5  100  5  2  91.1  

24  5.5  0.1  15  5.0  550  5  6  92.2  

25  7.0  0.3  22  10.0  550  5  10  99.9  

26  7.0  0.3  15  7.5  550  5  6  99.0  

27  7.0  0.5  22  7.5  550  2  6  98.3  

28  7.0  0.3  15  7.5  550  5  6  99.2  

29  7.0  0.5  8  7.5  550  2  6  96.8  

30  7.0  0.5  8  7.5  550  8  6  98.7  

31  8.5  0.3  15  7.5  550  2  10  98.3  

32  7.0  0.3  15  10.0  1000  2  6  99.0  

33  5.5  0.5  15  5.0  550  5  6  99.5  

34  7.0  0.3  22  5.0  550  5  10  98.2  

35  7.0  0.1  22  7.5  550  2  6  93.2  

36  8.5  0.1  15  10.0  550  5  6  96.0  

37  5.5  0.3  15  7.5  550  8  2  99.9  

38  7.0  0.5  15  7.5  100  5  2  99.9  

39  8.5  0.3  22  7.5  100  5  6  100.0  

40  8.5  0.5  15  5.0  550  5  6  99.7  

41  7.0  0.3  15  10.0  100  2  6  96.7  

42  7.0  0.3  8  10.0  550  5  10  98.7  

43  8.5  0.3  8  7.5  100  5  6  95.3  

44  8.5  0.3  8  7.5  1000  5  6  96.5  

45  7.0  0.3  15  10.0  100  8  6  98.5  

46  7.0  0.3  15  7.5  550  5  6  100.0  

47  8.5  0.3  15  7.5  550  8  10  99.9  

48 7.0 0.3 15 5.0 100 8 6 100.0 

49  8.5  0.3  22  7.5  1000  5  6     99.2  

50  7.0  0.3  15  7.5  550  5  6  99.9  

51  7.0  0.1  15  7.5  100  5  10  91.7  

52  5.5  0.3  22  7.5  1000  5  6  99.0  

53  7.0  0.5  15  7.5  100  5  10  100.0  

54  7.0  0.1  15  7.5  1000  5  2  95.8  

55  7.0  0.3  22  5.0  550  5  2  99.4  

56  7.0  0.3  15  5.0  100  2  6  90.3  

57  7.0  0.3  8  10.0  550  5  2  96.3  
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Table 1: Continue 

58  7.0  0.3  15  7.5  550  5  6  98.7  

59  7.0  0.1  15  7.5  1000  5  10  96.6  

60  5.5  0.3  8  7.5  1000  5  6  98.3  

61  5.5  0.3  22  7.5  100  5  6  99.8  

62  5.5  0.3  8  7.5  100  5  6  99.2 

 
Table 2: Layout of the seven variable box-behnken in coded terms (Kobya et al., 2014) 

Rep  X1  X2  X3  X4  X5  X6  X7 

1   0   0   0  -1   1  -1   0  

1   0   1   0   0   1   0   1  

1  -1   1   0   1   0   0   0  

1   0   0   0   1   1   1   0  

1  -1   0   0   0   0  -1   1  

1   1   1   0   1   0   0   0  

1   1  -1   0   0   0  -1  -1  

1   0  -1   0   0   0   1   0  

1   0   0   0  -1   0   0   1  

1   1  -1   0  -1   0   0   0  

1   0   0   0   1   0   0  -1  

1   0   1   0   0   1   0  -1  

1 0 0 0 -1 1 1 0  

1 0 0 0 0 0 0 0  

1 -1 0 0 0 0 1 1  

1 0 1 1 0 0 1 0  

1 -1 -1 0 1 0 0 0  

1 -1 0 0 0 0 -1 -1  

1 0 0 -1 -1 0 0 -1  

1 0 -1 1 0 0 1 0  

1 0 -1 -1 0 0 -1 0  

1 1 0 0 0 0 1 -1  

1 0 -1 0 0 -1 0 -1  

1 -1 -1 0 -1 0 0 0  

1 0 0 1 1 0 0 1  

1 0 0 0 0 0 0 0  

1 0 1 1 0 0 -1 0  

1 0 0 0 0 0 0 0  

1 0 1 -1 0 0 -1 0  

1 0 1 -1 0 0 1 0  

1 1 0 0 0 0 -1 1  

1 0 0 0 1 1 -1 0  

1 -1 1 0 -1 0 0 0  

1 0 0 1 -1 0 0 1  

1 0 -1 1 0 0 -1 0  

1 1 -1 0 1 0 0 0  

1 -1 0 0 0 0 1 -1  

1 0 1 0 0 -1 0 -1  

1 1 0 1 0 -1 0 0  

1 1 1 0 -1 0 0 0  

1 0 0 0 1 -1 -1 0  

1 0 0 -1 1 0 0 1 

1 1 0 -1 0 -1 0 0  

1 1 0 -1 0 1 0 0  

1 0 0 0 1 -1 1 0  

1 0 0 0 0 0 0 0  

1 1 0 0 0 0 1 1  

1 0 0 0 -1 -1 1 0  

1 1 0 1 0 1 0 0  

1 0 0 0 0 0 0 0  

1 0 -1 0 0 -1 0 1  

1 -1 0 1 0 1 0 0  
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Table 2: Continue 

1 0 1 0 0 -1 0 1  

1   0  -1   0   0   1   0  -1  

1   0   0   1  -1   0   0  -1  

1   0   0   0  -1  -1  -1   0  

1   0   0  -1   1   0   0  -1  

1   0   0   0   0   0   0   0  

1   0  -1   0   0   1   0   1  

1  -1   0  -1   0   1   0   0  

1  -1   0   1   0  -1   0   0  

1  -1   0  -1   0  -1   0   0 

 

I. Center-point runs help in the estimation of pure error 

thereby providing a lot of information at a minimum 

cost. This is especially helpful in situations where the 

experiment is conducted with a single replicate 

II. They help detect the regression model’s lack of fit. 

Lack-of-fit reveals the suitability or non-suitability of 

the chosen model to the data  

III. When the data collected is not sufficient, increasing 

the number of center point runs can increase the 

possibility of detecting significant factors and pure 

error can be estimated 
 

Response Surface Models of Second Order  

A second-order quadratic model is defined as: 
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where, y denotes the observed response for treatment 

combinations x = (𝑥1, 𝑥2, …, 𝑥𝑝); 𝛽𝑖’s represents the linear 

effects of the ith factor; 𝛽𝑖𝑖 represents the quadratic effect of 

the ith factor; 𝛽𝑖𝑗 represents the interaction effects between 

the ith and the jth factors and ɛ is the random error term. ɛ is 

assumed to be independent and normally distributed with 

mean 0 and constant variance σ2 i.e.,  ~ N (0, σ2).  

In the matrix notation, the model is denoted by: 
 
y X = +  (2) 

 
where:  

y is an N  1 vector of observations 

𝑋 is an N  p model matrix consisting of the levels of 

factors that are laid out in the model form 

𝛽 is a p  1 vector of parameters 

𝜀 is an N  1 vector of random errors associated with y 
 

The mean of y is the first moment defined by:  
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The variance of y is associated with second pure 

moments defined by:  
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Given a p- parameter model for a given N-point 

design, the moment matrix is defined as 1
X X

N
  and is 

also called the normalized information matrix where X 

is the design matrix defined in Eq. (2). The information 

matrix is the second mixed moment of vector X (it is 

the covariance matrix of X) defined as: 
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The normalization is to remove the effect of varying 

design sizes. The information matrix determines or measures 

the degree of information about an unknown parameter ϴ 

that can be obtained from a random variable given a specified 

amount of data. The inverse of the information matrix given 

as  𝑋′𝑋−1 is called the variance-covariance matrix. This 

contains the variances (diagonal elements) and the covariances 

(off-diagonal elements) of the model coefficients. 

The full quadratic model for this study is a 36-

parameter model given in Eq. (3): 
 

( ) 2

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 11 11

2 2 2 2 2 2

22 2 33 2 44 4 55 5 66 6 77 7 12 1 2 13 1 3

14 1 4 15 1 5 16 1 6 17 1 7 23 2 3 24 2 4 25 2 5

26 1 6 27 2 7 34 3 4 35 3 5 36 3

%y x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x

        

       

      

    

= + + + + + + + + +

+ + + + + + + +

+ + + + + + +

+ + + + 6 37 3 7 45 4 5

46 4 6 47 4 7 56 5 6 57 5 7 67 6 7 .

x x x x x

x x x x x x x x x x

 

     






+ + 

+ + + + +

 (3) 

 
From Eq. 3: 

 
𝑥1 … 𝑥7 represents the main effects terms   

𝑥1
2… 𝑥7

2 represents the quadratic terms  

𝑥1𝑥2 …𝑥6𝑥7 represents the cross product or interactions 

effects terms 

𝑦 (%) represents the response term  

𝛽1 − 𝛽7 represents the linear effects of the factors  

𝛽𝑖𝑖 represents the quadratic effect of the ith factor  

𝛽𝑖𝑗 represent the interaction effects between the ith and the 

jth factors    

ɛ represents the is the random error i.e., ɛ ~ N (0, σ2) 
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Akaike’s Information Criterion  

Akaike Information Criterion (AIC) is a criterion used to 

select a model from a set of models. It is an estimator of 

prediction error and compares the quality of a set of statistical 

models to each other. The Akaike information criterion was 

named in 1971 after a Japanese statistician, Hirotugu 

Akaike. AIC is computed as a function of the total 

independent variables used to build the models and as a 

function of the maximum likelihood estimate of the 

model. The maximum likelihood tells how well the model 

reproduces the data. The best model following the AIC 

technique is one that explains the greatest amount of 

variation with few possible independent variables.  

The AIC can be calculated as:  
 

( )( ) 2AIC NIn L k= − +  (4) 

 
where:  

N is given as the sample size  

k is given as the number of parameter estimates in the 

model  

( )ˆL   is a measure of the model fit and provides the 

model’s maximum likelihood function value 
 

When comparing multiple AIC values to determine 

which model is best, the lowest AIC value is selected as 

the best fit and most preferred model.  Even though the 

AIC chooses the best model from a set, it does not say 

anything about absolute quality. That is to say that if all 

the models from the set are poor, it will still choose the 

best of the poor set of models.   

Bayesian Information Criterion  

The Bayesian Information Criterion (BIC) also known 

as Schwarz Criterion (SBIC) is a criterion for model 

selection among a finite set of models. It is based in part 

on the likelihood function and closely related to Akaike 

Information Criterion (AIC). In model fitting, it is possible to 

increase the likelihood by adding parameters but doing so 

may result in overfitting. The BIC resolves this problem by 

introducing a penalty term for the number of parameters in 

the model. The penalty term is larger in BIC than in AIC. The 

BIC was developed by Schwarz (1978) and gave a Bayesian 

argument for adopting it. The BIC is closely related to the 

Akaike Information Criterion (AIC).   

Mathematically, BIC is denoted as:  
 

( )( ) ( )2BIC In L k In n= − +  (5) 

 
where:   

N is given as the sample size 

k is given as the number of parameters estimated by the 

model 

θ is a set of all parameters  

( )ˆL   represents the likelihood of the model being 

tested when evaluated at maximum likelihood values of θ 

given the specified data. ( )ˆL   can also be understood to be 

the probability of obtaining the data acquired supposing 

the model being tested is a given. 

The BIC simply reduces to maximum likelihood 

selection because the number of parameters is equal for 

the models of interest. When comparing models with the 

Bayesian information criterion, the BIC for each model is 

calculated. The model with the lowest BIC is considered 

the best or most preferred. A lower BIC can imply fewer 

explanatory variables, a good fit, or a combination of the 

two and has a dependence on the relative size of n and k.   

Variable Selection Techniques  

These are techniques used to discover a group of 

predictor variables to be included in a model which can be 

as small as possible that fits suitably and gives a good 

prediction of the response variable. The purpose of 

variable selection is to prevent over-fitting of the data (this 

occurs when many predictor variables are in the model) 

and to avoid loss of much information or underfitting 

when a lot of predictor variables are deleted from the 

model. The variable selection techniques include forward 

selection, backward elimination, stepwise selection, and 

all subsets. These methods automatically select variables 

that are significantly important in the model and can be 

easily performed using statistical software.   

The model selection criterion used for the reduced 

model in this study is the Akaike Information Criterion. 

AIC was chosen because it exhibits more tolerance in 

measuring statistical model goodness of fit in the 

presence of several parameters. This is part of this 

research work objective- to suitably fit the data to the 

reduced models of the various variable selection 

techniques employed. Another reason for the choice of 

AIC is that BIC is more restrictive than AIC as a result, 

BIC produces smaller models. According to Hendrick 

and Michel (1987), BIC is most suitable and 

recommended for experiments with large sample sizes. 

That is where the sample size surpasses 100 per 

independent (predictor) variable. During the analysis 

carried out with Design Expert statistical software, 

only two variable selection techniques were adopted 

(which are forward selection and backward 

elimination) using the AIC model selection criterion.    

Forward Selection  

Forward Selection is a variable selection technique 

performed by running a simple regression analysis on all the 

independent variables and examining the variables having 

the greatest F-statistic (and the smallest p-value).   

The algorithm for forward selection for a given 

threshold, α is as follows: 

https://en.wikipedia.org/wiki/Hirotugu_Akaike
https://en.wikipedia.org/wiki/Hirotugu_Akaike
https://en.wikipedia.org/wiki/Hirotugu_Akaike
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.statisticshowto.com/parametrization-parameterize/
https://www.statisticshowto.com/parametrization-parameterize/
https://www.statisticshowto.com/parametrization-parameterize/
https://www.statisticshowto.com/parametrization-parameterize/
https://www.statisticshowto.com/maximum-likelihood-estimation/
https://www.statisticshowto.com/maximum-likelihood-estimation/
https://www.statisticshowto.com/maximum-likelihood-estimation/
https://www.statisticshowto.com/maximum-likelihood-estimation/
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i. Begin with a model that does not have any predictors 

(no variable in the model) 

ii. Insert variable that has the largest F-statistic (given P-

value less than cut-off α value) 

iii. Refit and repeat step (ii). The F-statistics is recomputed 

at every step for the remaining variables, then the 

variable with the highest F-statistic is added to the 

model. This procedure is continued till there is no 

remaining variable that is significant at the specified 

level of α 
 

One of the benefits of forward selection is that it begins 

with smaller models. This method is also less prone to 

collinearity (correlation of variables in a model).   

The demerit of forward selection as stated in Mantel 

(1970) is that the forward selection does not examine the 

effects of the variables simultaneously since it begins with an 

empty equation. Consequently, in situations where variables 

in the model are correlated with each other none of the 

variables will be selected. Another drawback of the forward 

selection as identified by Chowdhury and Turin (2020) is that 

the insertion of a new variable may cause an existing variable 

in the model to be non-significant still the existing variable 

cannot be deleted from the model.  

Backward Elimination  

Backward Elimination is a variable selection 

technique that is the reverse of forward selection.   

Given a threshold α, the algorithm for the backward 

elimination technique is defined below: 

 

i. Start with all predictor variables in the model 

ii. Remove the variable that has the lowest F-statistics 

(provided the P-value is greater than α) 

iii. Refit and repeat step (ii). The F-statistic is recomputed 

after removing variables. Thereafter variables with the 

lowest F-statistics are deleted. This process is continued 

till all the variables left in the model are significant at the 

stipulated level of α 
 

An advantage of the backward elimination 
technique is its ability to evaluate the joint predictive 
variables since the procedure begins with all variables 
incorporated in the model. One of the disadvantages of 
backward elimination is that after a variable has been 
eliminated from the model it cannot be re-inserted 
again (Chowdhury and Turin, 2020). Another demerit 
of this technique is its non-suitability in cases where 
the number of variables to be considered is greater than 
the sample size. This is because it begins with the full 
model which includes all the predictors. 

The quality or efficiency of an experimental design 

can be measured (Iwundu, 2017). The most common 

measures of the efficiency of an experimental design 

are focused on the design's information matrix. The 

efficiency measures should not be interpreted on their 

own but can be used to compare designs. Given a set of 

designs, the one with the highest efficiency measure is 

best (with 100% as the maximum efficiency for any 

criterion). The design efficiency employed in this study 

is D-efficiency and G-efficiency. 

The D-efficiency criterion aims at making the 

determinant of the variance-covariance matrix for the 

chosen model parameter estimates as minimum as 

possible. A design with the highest Deficiency should 

be the best and most preferred. The D-efficiency values 

are a function of the number of points in the design, the 

number of independent variables in the model, and the 

maximum standard error for prediction over the design 

points as (Goo’s and Jones, 2011): 
 

11

Pp

p

X X X X
D efficiency

n n

 
− = = 

 
 

 
where, 𝑋′𝑋 is the information matrix of the design and can 

be denoted as M, p is the number of model parameters and 

n is the design size. The matrix 𝑋 is called the model 

matrix and is defined using the design and the model.   

G-efficiency compares the scaled prediction variance 

maximum value within the design region with regard to 

its theoretical minimum variance. Iwundu (2017) defines 

that the G-efficiency of a design can be computed 

mathematically as
max( )

p

v x

 where, p is the number of model 

parameters and max( )v x  the maximum scaled variance of 

prediction thus computed as 
2

ˆ( ( ))NVar y x


 where, N is 

given as the number of design points (sample size): 

 

( )( )  1ˆ max NxVar y x x M −=  

 
M is the information matrix 𝑋′𝑋   is the design  

The variance is scaled to make up for the differences in 

the sample size N. When comparing designs, the quantity 

becomes scale-free by dividing by σ2 and when multiplied by 

N the variance per observation is reflected in the quantity 

thereby removing the effects of the varying sample size.   

Utilized Software  

Two advanced statistical software packages namely, 

Design-Expert version 13 (Trial Version) and Minitab 

version 17, were utilized for the analysis of the Box-

Behnken experimental data used in this research work.  

Results and Discussion  

The results of the analysis are presented in Tables 3(a-f), 

Table 4-5. For clarity, the fit statistics, diagnostic 

properties, and design efficiency values of the full and 
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reduced quadratic models have been summarized under 

varying center point runs for easy comparison.   

Discussion of Findings  

In the design of experiments, a variety of factors can 

influence how well a particular design performs owing 

to that fact that the objective of any design is to estimate 

the model parameters without bias and with the least 

variance. These factors may include model type, design 

region, positioning of the design points, and missing 

design points (Chekwube et al., 2021). The data from 

(Kobya et al., 2014) on optimizing the removal of arsenite 

from groundwater was remodeled and analyzed using the 

Box-Behnken design laid out in sixty-two experimental 

trials. Analysis of the published model produced a thirty-

six-parameter model. Two variable selection techniques 

namely: Forward selection and backward elimination 

were employed to generate reduced models at varying 

design sizes. The design size was achieved by changing 

the number of center point runs (nc) ranging from 1 

through 6. All models did well in fitting the data.  

The results revealed that the reduced models suitably 

fitted the data. The fit statistics and diagnostic properties 

values confirm that the forward selection reduced model 

is the overall preferred model and produced its best 

models at and 1 center point runs respectively. The 

backward elimination reduced model came second being 

highly competitive with its best models at 2 and 3 center 

point runs. This shows that the sparsity-of-effects 

principle stands valid since fewer effects are statistically 

significant. The full quadratic performed the least, with its 

best model being the design with 6 center point runs.   

In terms of the AIC and BIC model selection criteria, 

the forward selection and backward elimination reduced 

models had the least AIC and BIC values at nc = 1. While 

the full quadratic model has its least at nc = 6. As the 

number of center point runs is increased, the fits and 

likelihood statistics for the reduced models tend to be 

closely related, plus at nc = 6, these values are the same. 

This implies that given a higher number of center point 

runs for a Box-Behnken design, there may be a tendency 

for the variable selection methods (forward selection and 

backward elimination) to produce similar models when 

employing the AIC model selection criteria.  

Comparing the design's D-efficiency values, the 57-

point design size (i.e., having nc = 1) for the reduced 

models (both forward selection and backward 

elimination) produced the top choice design. Whereas the 

58-point design size (i.e., having nc = 2) design produced 

the best design for the full quadratic model.  

Accessing the G-efficiency, the design with a 57-point 

design (i.e., having nc = 1) produced the best design for the 

full quadratic model. The 60-point design (i.e., having nc = 

3) produced the best design for the forward selection reduced 

model, and the 58-point design (i.e., having nc = 2), produced 

the best design for the backward elimination reduced model.  

It is important to note that the forward selection 

technique as well as the backward elimination 

technique have the limitation of including insignificant 

terms in the final model. This limitation was resolved 

during the analysis by using the Step AIC which 

selected models with the smallest AIC values.  

Following the results of the analysis, it is appropriate to 

describe the Box-Behnken design as a highly efficient design 

for fitting second-order response surface models with fewer 

experimental runs, despite its non-usage of the vertices 

(corner or axial points). As stated earlier, the Box Behnken 

experimental design is suited in cases where the corners of 

the cube points denote levels of combination which may 

be too expensive and impractical to test.  Box-Behnken 

design does not require so many points since the points 

on the cube are close to the center point. This explains 

why the BBD with one center point run seems to 

produce the best models and Box-Behnken designs 

with fewer center point run produced the best designs.  

The best models produced are summarized below: 

 

1. For the full quadratic (36-parameter) model, the best 

model produced is that of nc = 6 
2. For the forward selection criterion-reduced model, 

the best model produced is the 19-parameter model 
with nc = 1 

3. For the backward elimination criterion-reduced model, 
the best model produced is the 18-parameter model with 
nc = 1 

4. The D-efficiency values were obtained for the different 
design sizes. The reduced model produced higher D-
efficiency values. The most preferred design is that of a 
57-point design (with nc = 1) for both the full or reduced 
(forward selection and backward elimination) models 

5. Accordingly, the G-efficiency values were obtained for 

the different model types at varying center runs. The 

57-point design (with nc = 1) for the full model 

produced the overall best design 

 

Table 3a: Summary of ANOVA results for the removal efficiency response of full and reduced models at six center point runs nc = 6  

Models P  R2  Adj R2  AIC  BIC  S. D  C. V %  PRESS  F-value  P-value  

Full model  36  0.9339  0.8449  334.25  304.26  1.31  1.35  341.37  10.49  <0.0001 

Reduced model forward selection  22  0.9173  0.8739  239.49  260.34  1.18  1.22  181.52  21.14  <0.0001 

Reduced model backward elimination  22  0.9173  0.8739  239.49  260.34  1.18  1.22  181.52  21.14  <0.0001  
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Table 3b: Summary of ANOVA results for the removal efficiency response of full and reduced models at five center point runs nc = 5  

Models P  R2  Adj R2  AIC  BIC  S. D  C. V%  PRESS  F-value  P-value  

Full model  36  0.9338  0.8410  337.04  302.03  1.34  1.37  342.47  10.07  <0.0001  

Reduced model forward selection  22  0.9710  0.8723  238.42  258.23  1.20  1.28  182.00  20.52  <0.0001  

Reduced model backward elimination  22  0.9101  0.8625  238.46  258.99  1.23  1.27  183.20  20.25  <0.0001  

 

Table 3c: Summary of ANOVA results for the removal efficiency response of full and reduced models at four center point runs nc = 4 

Models P  R2  Adj R2  AIC  BIC  S. D  C. V%  PRESS  F-value  P-value  

Full model  36  0.9335  0.8366  340.25  299.82  1.36  1.40  343.85  9.63  <0.0001  

Reduced model forward selection  22  0.9166  0.8706  237.78  256.10  1.21  1.25  182.50  19.89  <0.0001  

Reduced model backward elimination  21  0.9097  0.8634  237.14  256.81  1.25  1.28  183.69  19.64  <0.0001  

 
Table 3d: Summary of ANOVA results for the removal efficiency response of full and reduced models at three center point Runs nc = 3 

Models  P  R2  Adj R2  AIC  BIC  S. D  C. V%  PRESS  F-value  P-value  

Full model  36  0.9336  0.8325  343.30  297.00  1.38  1.42  340.88  9.23  <0.0001  

Reduced model forward selection  18  0.8860  0.8387  235.17  255.46  1.36  1.40  192.72  18.74  <0.0001  

Reduced model backward elimination  21  0.9100  0.8626  235.08  253.74  1.25  1.29  182.51  19.21  <0.0001  

 
Table 3e: Summary of ANOVA results for the removal efficiency response of full and reduced models at two center point runs nc = 2 

Models P  R2  Adj R2  AIC  BIC  S. D  C. V%  PRESS  F-value  P-value  

Full model  36  0.9332  0.8268  347.49  294.81  1.41  1.46  342.58  8.78  <0.0001  

Reduced model forward selection  18  0.8877  0.8400  232.26  251.81  1.36  1.40  189.51  18.60  <0.0001  

Reduced model backward elimination  21  0.9096  0.8607  233.84  251.44  1.27  1.31  182.90  18.60  <0.0001  

 
Table 3f: Summary of ANOVA results for the removal efficiency response of full and reduced models at one center point run nc = 1 

Models P  R2  Adj R2  AIC  BIC  S. D  C. V%  PRESS  F-value  P-value  

Full model  36  0.9350  0.8266  349.95  290.30  1.42  1.46  349.44  8.63  <0.0001  

Reduced model forward Selection  19  0.9024  0.8562  226.45  244.73  1.29  1.33  168.67  19.52  <0.0001  

Reduced model backward elimination 18  0.8932  0.8466  227.05  245.83  1.33  1.38  182.06  19.18  <0.0001  

 
Table 4: D-efficiency values of the box-behnken design relative to the design size and model type 
  D-efficiency (%) 
  ---------------------------------------------------------------------------------------------------------------- 

Design size No of center points nc Full model  Reduced model (forward selection)  Reduced model (backward elimination) 

62  6  17.76 22.28 22.28  

61  5  17.96  22.57  23.16  

60  4  18.15  22.87  23.46  

59  3  18.32  23.84  23.76  

58  2  18.44  24.22  24.06  

57  1  18.43  24.47  24.59  

 

Table 5:  G-efficiency values of the Box-Behnken design relative to the design size and model type 

  G-efficiency (%) 

  -------------------------------------------------------------------------------------------------------------- 

Design size     No of center points nc Full model  Reduced model (forward selection) Reduced model (backward elimination)  

62         6  64.97  57.09  57.09  

61         5  66.00  58.02  58.02  

60         4  67.06  58.97  56.29  

59         3  68.12  54.41  57.23  

58         2  69.14  55.20  58.04  

57         1  69.94  57.40  56.01 

 

Conclusion 

The efficiency and robustness of the Box-Behnken 

design have been thoroughly investigated and demonstrated 

in this research work, both in the face of standard (full 

quadratic) and non-standard (reduced quadratic) models 

under varying center point runs.  This study is practical in 

situations where physical process (materials/resources and 

time) limitations make it unrealistic to test the full 

experimental design. Thus, it is possible to obtain models 
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that suitably fit the given data and align with the goal of the 

experimental design and available resources. For effective 

results, nonstandard (reduced quadratic) models produce the 

best results when the design size is small (preferably with one 

center point run). Whereas the standard (full) model 

performs best when the design size is large (with at least six 

center point runs or a maximum number of center point runs 

generated by the statistical software).  
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