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Abstract: Chemical pesticides are widely used to control plant diseases, 

but their widespread use can have a detrimental impact on the 

environment and human health. This has led researchers and growers to 

seek out alternative solutions. One promising approach is the use of the 

Plant Growth-Promoting Fungus (PGPF) Trichoderma spp. as a 

biological control agent. This method is effective, cost-efficient, and 

sustainable, reducing the incidence and severity of plant diseases while 

enhancing crop production. Trichoderma works in several ways to 
combat pathogens, including through mycoparasitism, antibiosis, 

competition, plant growth promotion, and stimulation of pathogen 

defenses. Various formulations of Trichoderma have shown potential as 

bio-fungicides and plant growth stimulants. Additionally, secondary 

metabolites from Trichoderma spp. have been found to have potent 

antimicrobial properties against various phytopathogens. This chapter 

provides an overview of the potential and mechanisms of action of 

Trichoderma in controlling plant diseases. It is intended to be a helpful 

resource for those seeking an alternative to chemical fungicides for 

managing plant diseases. 
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Introduction 

Plant diseases have a devastating impact on agriculture 

and society, leading to significant economic losses for 

farmers and agricultural industries (Sultana and Hossain, 

2022). Crop losses reduce yields, threatening food security, 

causing shortages, and raising food prices. This limits 

access to essential nutrients, leading to malnutrition and 

hunger. Communities reliant on agriculture suffer social 

disruption, affecting livelihoods, employment, and food 

access. Historically, plant diseases have caused immense 

human suffering, including loss of livelihoods, poverty, 

hunger, displacement, and death. Notable examples include 

the Irish potato famine of the 19th century, which resulted 

in over two million deaths and mass emigration, the Bengal 

famine of 1943, and the wheat blast outbreaks in 

Bangladesh in 2016 (Agrios, 2005; Islam et al., 2016; 

Savary et al., 2020; Hossain, 2022a). 

Effective plant disease management is crucial to 

reducing crop losses. Methods to prevent infection by 

plant pathogens include cultural, chemical, physical, and 

biological approaches. Chemical methods are effective 

but costly, harmful to human health and the environment, 

and can lead to pesticide resistance. Additionally, they 

negatively impact beneficial soil microbes, increasing the 

host's susceptibility to plant pathogens (Heydari and 

Pessarakli, 2010). Therefore, researchers and growers are 

exploring non-chemical alternatives for plant disease 

management, such as using microbial agents in biological 

control to target specific pathogens (Hossain and Sultana, 

2020; Hossain 2022b; Sultana and Hossain, 2022). 

Trichoderma is a Plant Growth-Promoting Fungus 

(PGPF) that stimulates plant growth and is one of the most 

widely used biocontrol fungal agents for treating a wide 

range of plant diseases (Fig. 1). Researchers have 

demonstrated that Trichoderma displays antagonistic 

activity against pathogens that are transmitted through 

seeds and soil (Arefin et al., 2019; Begum et al., 2010; 

Das et al., 2019; Rahman et al., 2020a-b; 2021; Rubayet 

and Bhuiyan, 2016; 2023; Bhuiyan and Rubayet, 2023; 

Hasan et al., 2023; Rahman et al., 2024). Inoculating 

seeds or seed materials and soil with Trichoderma has 
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shown the potential to manage the disease and boost crop 

productivity (Halifu et al., 2019; Hossain and Sultana, 

2024). Many studies indicate that Trichoderma can induce 

local and systemic resistance to pathogens (Hossain et al., 

2017). Employing Trichoderma for biological control is 

promoted as an environmentally friendly, cost-effective, 

and sustainable plant disease management strategy. This 

approach is feasible for managing diseases where other 

control methods are lacking or for products requiring 

organic certification without pesticide residues. 

Researchers worldwide have screened Trichoderma 

strains for disease control efficacy, gaining insights into 

their mechanisms of action. Numerous formulations have 

been developed and field-tested to enhance the fungus's 

applicability (Mbarga et al., 2012). This review 

consolidates current knowledge on the crucial role and 

mechanisms of Trichoderma in plant disease control, 

focusing on field application formulations. 

Plant Growth-Promoting Fungus (PGPF) 

PGPF stands for Plant Growth-Promoting Fungi, 

which is a broad group of nonpathogenic fungi found in 

the rhizosphere that create a mutually beneficial 

connection with host roots, hence increasing plant growth 

(Hossain et al., 2008; Hossain and Sultana, 2020). This 

group of fungi plays a crucial role in the rhizosphere 

ecosystem without causing detrimental effects. Reported 
effects of PGPF include significant enhancements in 

germination rates, seedling vigor, biomass production, 

development of root hairs, photosynthetic efficiency, 

flowering and ultimately yield. Furthermore, certain 

strains have been shown to positively influence the 

biochemical composition of plants (Hossain et al., 2017). 

The precise mechanism by which the PGPF promotes 

plant growth and development is still unknown. However, 

most of the PGPF are soil-borne saprophytes that 

mineralize nutrients from decomposing organic materials. 

Phytohormones produced by many PGPFs have a vital 
role in the growth enhancement of plants. Furthermore, 

these fungi are competitive in the rhizosphere and can 

acquire substrate, spaces, and resources more than other 

rhizosphere microorganisms. PGPF also helps plants 

grow well by reducing the negative impact of harmful 

pathogens on plants (Jahagirdar et al., 2019; Muslim et al., 

2019). Some PGPF strains even improve plant resilience 

to abiotic stresses (Hossain and Sultana, 2020). Until now, 

many fungal strains have been reported to act as PGPF. 

Trichoderma, Talaromyces Aspergillus, Penicillium, 

Aureobasidium, Purpureocillium, Exophiala, 

Cladosporium, Phomopsis, Colletotrichum, Chaetomium, 
Fusarium, Phoma, Gliocladium (Ascomycota), 

Rhodotorula, Rhizoctonia, Limonomyces, sterile fungi 

(Basidiomycota), Rhizopus and Mucor (Zygomycota) 

are the most common PGPF (Shimizu et al., 2013; 

Hossain et al., 2017). 

 
 
Fig. 1: Effect of root colonization by Trichoderma on plant 

growth and protection against pathogens 
 

Trichoderma: Systematic, Reproduction and Diversity 

Persoon (1994), a well-known mycologist, is credited 

with originally characterizing the fungus Trichoderma in 

1794. Trichoderma is a filamentous fungus in the 

Hypocreaceae family that is widely dispersed, appearing 

in almost every soil. Recently, Trichoderma species have 

been found in water-damaged construction materials and 

indoor dust (Hossain and Sultana, 2020). While 

Trichoderma is typically classified as a free-living soil 

fungus, studies show that some species can function as 

opportunistic, nonpathogenic plant symbionts or fungal 
parasites. This beneficial microbe reproduces asexually 

by producing conidia and chlamydospores and sexually by 

producing ascospores (Shah and Afiya, 2019). Their growth 

and multiplication rate are very high (Rajesh et al., 2016). 

Trichoderma typically starts its development as a white, 

cotton-like mycelium, which then transitions to yellowish-

green and eventually forms dense, dark-green tufts, 

especially prominent in the center of a growth area on an 

agar surface (Islam et al., 2018). The conidiophores are 

irregularly arranged, resembling flask-shaped or cylindrical 

clusters and sometimes almost spherical phialides. The 
conidia, which are usually green but can sometimes be 

hyaline, are ellipsoidal to nearly spherical and tend to 

cluster near the tips of the phialides (Zhu and Zhuang, 

2015). Trichoderma is highly diverse with distinct physical 

and cultural characteristics (Fig. 2). On a rpb2-based 

phylogenetic tree, the most recent listing of nearly 200 

(Atanasova et al. 2013) named species was displayed. 

Jaklitsch (2009) attributed the incredible genetic changes of 

many species to their mycoparasitic behavior. 

An in-depth study that analyzed 143 species using 

multigene phylogenetic analysis, inherited trait 

restorations, and variation analysis supported this 
finding (Chaverri and Samuels, 2013). The genomes of 

two species identified as mycoparasites by Chaverri and 

Samuels (2013) contain mycoparasitism-specific 

genes, indicating genetic diversity after changing hosts. 
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Fig. 2: Trichoderma strains with unique morphological and 

cultural characteristics on Potato Dextrose Agar (PDA) 
plates; (A) Isolate Pb-22; (B) Isolate Pb-24; (C) Isolate 
Com-70; and (D) Isolate BBUT-70 

 
Conversely, the genome of a third species T. reesei 

previously believed to be saprobic, did not include these 

mycoparasitism genes (Kubicek et al. 2011). Previous 

research on the classification, variety, and evolutionary 

history of Trichoderma relied on random samples, as 

demonstrated by Overton et al. (2006a-b). Diversity 

studies have pondered on soil-dwelling species in limited 

geographical regions. For example, Hoyos-Carvajal et al. 

(2009) identified 29 species out of 183 isolates. Smith et al. 

(2013) discovered seven species out of 21 isolates in 

Colombia. Belayneh Mulaw et al. (2010) identified eight 

known species and potentially eight new species from 134 

isolates obtained from Coffea plants. Wuczkowski et al. 

(2003) found eight species in 46 samples in a limited area 

in the Donau-auen National Park near Vienna, Austria, 

while Migheli et al. (2009) found fifteen species in Sardinia 

in 482 isolates. Zachow et al. (2009) identified eight 

species from 42 isolates collected from the soil in Tenerife. 

Błaszczyk et al. (2011) broadened their soil research to 

encompass cereal grains, compost, and wood, identifying 

14 species out of 170 isolates in Poland. Many researchers 

used ITS and identification methods on the ISTH website 

to demonstrate that some identified species were actually 

groups of species. Soil studies indicate that T. harzianum is 

the prime species group in that zone. Jaklitsch (2009; 2011) 

conducted an extensive review of Trichoderma species 

diversity, where they identified 75 distinct species from an 

examination of 620 Hypocrea specimens collected 

throughout central and northern Europe.  

Common Trichoderma as PGPF 

Trichoderma shows enormous potential as PGPF in 
many plant species, including tomato, chili, cucumber, 

brinjal, bean, pea, radish, carrot and lettuce (Baker, 1988; 
Roy et al., 2022; Simi et al., 2019; Kleifeld and Chet, 
1992; Liton et al. 2019; Lynch et al., 1991; Ahmed et al., 
2019; Rubayet et al., 2020 Ousley et al. 1993-1994). 
Among the 254 identified species (Bissett et al. 2015), 
13 including T. harzianum, T. viride, T. reesei, T. 
virens, T. atroviride, T. asperellum, T. 

longibrachiatum, T. citrinoviride, T. koningii, T. 
pseudokoningii, T. hamatum and T. polysporum are 
important PGPF (Thakur, 2021). These Trichoderma 
strains induce short- and long-term improvement in 
plant growth (Doni et al. 2014; Hossain and Sultana 
2020). According to Chang et al. (1986), treating vinca, 
chrysanthemum, pepper, tomato and cucumber seeds 
with a conidial suspension of T. harzianum T-203 
enhanced the germination of pepper reduced the 
flowering time of vinca and increased the number of 
flowers in chrysanthemum. In the meantime, the plant 
height and biomass of the yield components 

remarkably increased. In addition, the interaction of T. 
harzianum, T. virens, and Arabidopsis thaliana 
resulted in the enhancement of lateral root number 
(Contreras-Cornejo et al., 2014). Many other studies 
have shown that Trichoderma spp. may improve seed 
germination, root and shoot length, fresh and dry 
weight, plant height, number of leaflets, number of 
bulbs, pods, weight, diameter, branching, number of 
flowers, leaf area index, number of fruits and yield of 
various crops (Table 1). 

Several mechanisms have been suggested to explain 

growth promotion, such as nutrient mineralization, 

improved nutrient uptake, increased photosynthesis, 

phytohormone production, and pathogen control. Most 

Trichoderma are involved in inorganic nutrient 

solubilization and sequestration (Mukhopadhyay and 

Kumar, 2020). They increase nutrient uptake by plants 

from the rhizosphere by secreting an organic biochemical 

compound that dissolves the mineral form of nutrients 

into available ions (Saravanakumar et al., 2013). These 

fungi improve soil structure and texture (Halifu et al. 

2019) and the associated microbial community (Zhou et al., 

2019). Trichoderma species are efficient colonizers, 

making root colonization with their mycelia by forming 

an appressorium for linking with the epidermis and the 

cortex of the plant cells (Yedidia et al., 1999). It 

enhances the rhizosphere by continuously colonizing 

roots, which augments extracellular organic compounds 

like urease, sucrase, phosphatase, and various organic 

acids within the root zone. This process stimulates 

nutrient recycling and boosts plant enzyme activity in 

the soil. (Halifu et al. 2019). Contreras-Cornejo et al. 

(2009) found that Trichoderma spp. enhance growth 

through an auxin-dependent mechanism. Through in 

vitro testing, they showed that T. virens Gv29.8 and T. 

atroviride IMI206040 have the ability to produce IAA 
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with derivatives and enhance the formation of lateral 

roots in Arabidopsis. However, the relationship between 

IAA synthesis and promoting plant growth in soil-based 

environments remains inconclusive. Hoyos-Carvajal et al. 

(2009) demonstrated that while many Trichoderma 

strains can synthesize IAA, only a few can stimulate 

plant growth. The other classes of microbial molecules 

identified as key players in promoting plant growth are 

the microbial Volatile Organic Compounds (mVOCs) 

(Hossain and Sultana 2024). mVOCs are low-molecular-

weight, lipophilic compounds that readily evaporate at 

±25°C and are known to play a role in long-distance 

communication among organisms (Hossain et al. 2017). 

mVOCs are diverse classes of chemicals, including 

mono and sesquiterpenes, alcohols, cyclohexanes, 

esters, ketones, thioalcohols, thioesters, and lactones 

(Schenkel et al., 2015). For example, 6-pentyl-2H-

pyran-2-one (6-PP) has been identified in numerous 

Trichoderma species, such as T. asperellum (Kottb et al., 

2015), T. atroviride (Stoppacher et al. 2010), T. 

citrinoviride and T. hamatum (Jeleń et al., 2014). In 

addition, it has been demonstrated that its production by 

T. atroviride induces lateral root formation in A. thaliana 

(Garnica‐Vergara et al. 2016). Interestingly, not all 

Trichoderma species produce 6-PP (Atanasova et al. 

2013). However, Kottb et al. (2015) found that most 

Trichoderma species can stimulate plant growth, 

suggesting that the correlation between 6-PP production 

and growth stimulation is less convincing, as observed 

by Lee et al. (2016). 

 
Table 1: Effect of common Trichoderma spp. on growth and development of field crops 

Trichoderma spp. Crops Consequences References 

T. harzianum Allium cepa ↑ Root length, plant height, number of leaflets, and yield Akter et al. (2016) 

 Capsicum frutescens ↑ Plant height, fruiting, and yield  Simi et al. (2019) 

 Cicer arietinum ↑ Plant height, pod, and yield Talukdar et al. (2017) 

 Cucumis sativus ↑ Cumulative root length, number of root tips Yedidia et al. (2001) 

 Daucus carota ↑ Weight (fresh and dry), length (shoot and root), and yield Ahmed et al. (2019); 

   Hasan et al. (2021) 

 D. carrota ↑ yield  Rubayet et al. (2020) 

 Glycine max ↑ Plant height, pod, and yield Rahman et al. (2021) 

 Lens culinaris ↑ Weight (fresh and dry), length (shoot and root), and yield Das et al. (2019) 

 Phaseolus vulgaris ↑ Yield  Liton et al. (2019) 

 Pisum sativum ↑ Length and number of lateral roots Naseby et al. (2001) 

 P. sativum ↑ Yield Akhter et al. (2015) 

 Raphanus sativus  ↑ Siliqua length and number, and yield Arefin et al. (2019) 

 Solanum lycopersicum ↑ Seeds germination of tomato and enhanced Vinale et al. (2013) 

  their seedling growth 

 S. lycopersicum ↑ Root length and tips Cai et al. (2013) 

 S. lycopersicum ↑ Fruit and Yield  Nitu et al. (2016) 

 Solanum tuberosum ↑ Yield Rubayet and Bhuiyan (2016) 

 S. lycopersicum ↑ Solubilization of PO₄³⁻ and micronutrient Li et al. (2015) 

 Zea mays ↑ Plant height and root length Herrera-Jiménez et al. (2018) 

T. atroviride Gossypium hirsutum ↑ Protection against plant chitinases, induce  Harman et al. (2004) 

 Z. Mays expression of defense responses Seidl et al. (2006)  

 A. thaliana ↑ Volatile compound and plant growth  Nieto-Jacobo et al. (2017) 

T. viride Nicotiana tabacum ↑ Hypersensitive response, defense response Engelberth et al. (2001) 

T. asperellum Cucumis sativus  ↑ Phosphorus and Fe, defense response Segarra et al. (2007) 

 Arabidopsis   Yoshioka et al. (2012) 

 A. thaliana ↑ Volatile compound and plant growth  Nieto-Jacobo et al. (2017) 

T. koningii Lotus japonicus ↓ Phenolic compounds Chen et al. (2011) 

T. saturnisporum S. lycopersicum ↑ Phytochromes Marín-Guirao et al. (2016) 

 C. frutescens 

T. aggressivum C. frutescens  ↑ Seedling growth Sánchez-Montesinos et al. (2020) 

f. sp. europaeum S. lycopersicum 

T. longibrachiatum Triticum aestivum ↑ Tolerance to salt stress Zhang et al. (2016) 

T. hamatum A. thaliana ↑ Induce systemic resistance against foliar pathogens Studholme et al. (2013) 

 Oryza sativa 

T. gamsii Z. mays ↑ Production ammonia and salicylic acid  Rinu et al. (2014) 

 Glycine max ↓ Siderophores  

T. phayaoense Cucumis melo ↑ Plant vegetative growth  Nuangmek et al. (2021) 

T. tomentosum Z. mays ↑ Plant and root length Herrera-Jiménez et al. (2018) 

T. reesei T. aestivum ↑ Nutrition status Ikram et al. (2019) 

T. virens A. thaliana ↑ Volatile compound and plant growth  Nieto-Jacobo et al. (2017) 
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Biocontrol of Plant Diseases by Trichoderma 

Biocontrol involves using living organisms to suppress, 

reduce, or eliminate pest populations. Trichoderma species 

display both biostimulation and biocontrol properties. They 

interact with plant roots through diffusible and volatile 

compounds, regulate the stress hormone ethylene, and 

produce phytohormones like auxins (indole-3-acetic acid). 

Their plant-protective mechanisms include parasitism, 

production of antibiotics and secondary metabolites, and 

activation of induced systemic resistance (ISR). 

Trichoderma stimulates growth and defense responses by 

activating Salicylic Acid (SA), Ethylene (ET), and 

Jasmonic Acid (JA) pathways, offering protection against 

various plant pathogens (Guzmán-Guzmán et al. 2023). 

This beneficial microorganism is a commonly used 

biocontrol agent against a wide range of diseases caused by 

fungi, bacteria, viruses, protists, and nematode species such 

as T. harzianum, T. viride, T. atroviride, T. virens, T. 

citrinoviride, T. polysporum, T. stromaticum, T. hamatum, 

T. asperellum, T. saturnisporum and T. aggressivum have 

been recognized as effective biological control agents 

against plant pathogens (Hossain et al., 2017; Park et al., 

2019; Hossan and Sultana, 2024). 

Biocontrol of Fungal Diseases 

Plant diseases contribute to approximately 10-15% of 
annual losses globally in main crops (Chatterjee et al., 

2016). Among plant diseases, 70-80% are caused by more 

than 19000 fungi (Peng et al. 2021). Managing these 

diverse groups of fungal pathogens without causing major 

ecological disruption is challenging. Using bioagents like 

Trichoderma could be beneficial in controlling these 

fungal diseases without upsetting the equilibrium of 

naturally occurring microorganisms.  

Several studies have revealed that various strains of 

Trichoderma can inhibit common fungal pathogens such 

as A. alternata (Gveroska and Ziberoski, 2012), A. tenuis 

(Begum et al. 2010), A. brassicae (Arefin et al., 2019), 
Botrytis cinerea (Mukesh et al., 2016), Cercospora 

moricola (Mukesh et al., 2016), C. capsici (Simi et al., 

2019), F. culmorum (Matarese et al., 2012), F. solani 

(Rojo et al., 2007), M. phaseolina (Rahman et al. 2021), 

P. aphanidermatum (Howell, 2002), Phytophthora 

capsici (Ezziyyani et al., 2007), Plasmopara viticola 

(Banani et al., 2013), R. solani (Amin et al., 2010), 

Rhizopus oryzae (Howell, 2002), Sclerotinia sclerotiorum 

(Thakkar and Saraf, 2015), Ustilago segetum var. tritici 

(Mukesh et al., 2016) (Table 2). 

 
Table 2: Management of fungal diseases using Trichoderma spp. as a bioagent  

Crops Diseases Pathogens Trichoderma spp. References 

Capsicum frutescens Anthracnose Colletotrichum capsici T. harzianum Simi et al. (2019) 

Rosa sp. Grey mold  Botrytis cinerea  Mukesh et al. (2016) 

Arachis hypogaea Brown root rot  Fusarium solani  Rojo et al. (2007) 

Nicotiana tabacum Brown spot  A. alternata  Gveroska and Ziberoski (2012) 
Glycine max Charcoal rot Macrophomina phaseolina   Rahman et al. (2021) 

Solanum lycopersicum Collar rot Sclerotium rolfsii  Amin et al. (2010) 

C. annuum Damping off  Phytophthora capsici  Ezziyyani et al. (2007) 

Gossypium hirsutum Damping off  Rhizoctonia solani  Howell (2002) 
Beta vulgaris 

C. annuum Fruit rot A. tenuis  Begum et al. (2010) 

S. lycopersicum Fruit rot R. solani  Amin et al. (2010) 

G. max Root rot disease R. solani  Rahman et al. (2020c) 
Oryza sativa Sheath blight  R. solani   Naeimi et al. (2011) 

Daucus carota Southern blight S. rolfsii  Ahmed et al. (2019); 

    Rubayet et al. (2020) 

Solanum tuberosum Stem rot  S. rolfsii  Rubayet and Bhuiyan (2016) 
Cicer arietinum Dry root M. phaseolina   Manjunatha et al. (2013) 

Zea mays Ear & kernel rot F. verticillioides  Ferrigo et al. (2014) 

S. tuberosum Potato dry rot F. sambucinum  Ru and Di (2012) 

Elettaria cardamomum Rot  Phytophthora sp.  Mukesh et al. (2016) 
Vitis vinifera Downy mildew Plasmopara viticola  Banani et al. (2014) 

Z. Mays Ear & kernel rot F. verticillioides  Ferrigo et al. (2014) 

Raphanus sativus Alternaria blight Alternaria brassicae  Arefin et al. (2019) 

S. lycopersicum Fruit rot R. solani T. viride  Amin et al. (2010) 
Solanum melongena Root rot disease M. phaseolina   Ramezani (2008) 

Zingiber officinale Rhizome rot Pythium sp.  Mukesh et al. (2016) 

Phaseolus vulgaris Web blight  Sclerotinia sclerotiorum  Amin et al. (2010) 

Cajanus cajan Foot rot F. udum  Mukesh et al. (2016) 
G. max Root rot F. oxysporum f. sp. adzuk  John et al. (2010) 

Rosa sp. Grey mold  Botrytis cinerea  Mukesh et al. (2016) 
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Table 2: Count. 

Vigna radiata Dry root R. bataticola T. virens Dubey et al. (2009) 
Z. officinale Rhizome rot Pythium sp.  Mukesh et al. (2016) 
S. lycopersicum Fruit rot R. solani  Amin et al. (2010) 
S. lycopersicum Wilt  F. oxysporum f. sp. T. asperellum El Komy et al. (2015) 
  lycopersici (FOL) 

Zea mays Root rot disease F. oxysporum f. sp. adzuki  Mbarga et al. (2012) 
Beta vulgaris Damping-off R. solani  Kakvan et al. (2013) 
Medicago sativa Blossom blight  S. sclerotiorum T. atroviride Li et al. (2005) 
C. frutescens Grey mold  B. cinerea  Freeman et al. (2004) 
S. tuberosum Potato dry rot F. sambucinum  Ru and Di (2012) 
S. tuberosum Potato dry rot F. sambucinum T. longibrachiaum Ru and Di (2012) 
Arachis hypogaea Brown root F. solani  Rojo et al. (2007) 
Z. officinale Rhizome rot Pythium sp.  Mukesh et al. (2016) 

S. lycopersicum Root-knot M. incognita T. citrinoviride Fan et al. (2020) 
G. max White mold S. sclerotiorum  Thakkar and Saraf (2015) 
 Charcoal rot M. pheseolina 
A. cepa Purple blotch A. porri T. pseudokoningii Imtiaj and Lee (2008) 
Triticum aestivum Loose smut  Ustilago segetum T. koningii Mukesh et al. (2016) 
  var. tritici 
B. vulgaris Damping-off S. rolfsii  Paramasivan et al. (2014) 
Morus alba Leaf spot Cercospora moricola Trichoderma spp. Mukesh et al. (2016) 
B. vulgaris Damping-off S. rolfsii T. reesei Paramasivan et al. (2014) 

Fragaria ananassa Anthracnose  C. acutatum  T. hamatum  Freeman et al. (2004) 
C. annuum Root rot disease R. solani T. polysporum  Ramezani (2008) 

 

Freeman et al. (2004) observed that T. harzianum 

isolate T-39 could efficiently manage the C. acutatum 

and B. cinerea in strawberries under controlled 

environmental conditions. T. guizhouense 9185 and T. 

simmonsii 8702 isolates significantly decreased the R. 

solani disease severity and incidences by 36.6 and 

45.0%, respectively (Wang and Zhuang, 2019). T. 

harzianum IMI-392432, T. pseudokoningii IMI-392431, T. 

harzianum IMI-392433, T. virens IMI-392430 and T. 

harzianum IMI-392434 have shown significant biocontrol 

efficacy against A. alternata (Rahman et al., 2020b). 

Sánchez-Montesinos et al. (2019) reported that T. 

aggressivum f. europaeum controlled the damping-off 

caused by Pythium ultimum in melon seedlings, reducing 

the severity of the disease by 63%. Rini and Sulochana 

(2007) achieved a 25% reduction in the incidence of 

Rhizoctonia root rot in chili by applying T. pseudokoningii 

or T. harzianum. Hafez et al. (2018) reported that T. viride 

and T. harzianum controlled powdery mildew caused by 

Podosphaera xanthii on cucumbers by approximately 40%. 

T. harzianum T22 and other Trichoderma-based 

formulations inhibited Fusarium crown and foot rot by 

less than 30% (Roberti et al., 2012).  

Recently, Sánchez-Montesinos et al. (2021) revealed 

that T. aggressivum f. europaeum TAET1 completely 

inhibited the growth of Sclerotinia sclerotiorum, 

Mycosphaerella melonis, and B. cinerea in detached leaf 

assays, as well as the germination of sclerotia of S. 

sclerotiorum. In plant assays for pathosystems, the disease 

incidence and severity ranged from 22% for F. solani to 

80% for M. melonis. This isolate reduced the incidence of 

Podosphaera xanthii by 66.78% in zucchini leaves. In a 

field trial, application of T. harzianum at a rate of 90 g/m2 

significantly reduced pre- and post-emergence mortality of 

carrots caused by S. rolfsii and enhanced the yield of 

healthy edible taproots relative to the control (Fig. 3). 

Trichoderma-treated plants were larger and yielded 

substantially more edible taproots than untreated plants. 

Therefore, applying Trichoderma to crops can be 

regarded as one of the most viable alternatives to chemical 

fungicides against fungal diseases. 

 

 
 
Fig. 3: Effect of Trichoderma harzianum on seedling mortality 

and edible taproot infection caused by Sclerotium rolfsii 
in carrots; (A) plants grown in untreated plots; (B) Plants 
grown in T. harzianum-treated plots; (C) Infected edible 
taproot harvested from untreated plants; (D) healthy-
looking edible taproot harvested from Trichoderma-
treated plants 
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Biocontrol of Bacterial Diseases 

Bacterial pathogens rank second only to fungi as 

significant plant pathogens globally. Six genera of 

bacteria for instance Agrobacterium, Xanthomonas, 

Pseudomonas, Corynebacterium, Erwinia, and 

Streptomyces are responsible for causing important 

plant diseases (Michalak et al., 2022). The management 

of plant bacteria is complex due to the faster growth rate 

under favorable environmental conditions (Sundin et al., 

2016). Moreover, a few chemicals are effective against 

bacterial diseases. Hence, using bioagents such as 

Trichoderma spp. is preferable to controlling bacterial 

infections in crops. However, reports on using 

Trichoderma spp. for the biocontrol of bacterial diseases 

are limited. Ralstonia solanacearum (Bacterial wilt) is 

one of the most harmful bacteria that can cause wilt 

disease in crops such as tomatoes, potatoes, and brinjal. 

Other methods of controlling R. solanacearum have 

recently been investigated but achieving the desired 

level of disease control in a sustainable and 

environmentally friendly manner remains challenging. 

Ralstonia solanacearum infection in tomatoes was 

successfully controlled by applying T. asperellum in 

open conditions (Konappa et al., 2018). The results 

showed that treating the soil with T. asperellum 

intensified tomato plant growth, and yield and declined 

wilt incidence. In this study, T. asperellum elicited 

bacterial wilt resistance in tomato plants.  

In this study, T. asperellum elicited bacterial wilt 

resistance in tomato plants. In the recent investigations, 

the utilization of Trichoderma spp. Soil applications in the 

form of fungal suspension have been observed to 

effectively control R. solanacearum in potato cultivation, 

as indicated by Mohamed et al. (2020). Erwinia is another 

notorious bacterial genus that can cause soft rot and die-

back diseases in the potato and papaya. Sulaiman et al. 

(2020) investigated the effectiveness of Trichoderma spp. 

in inhibiting Erwinia carotovera, subsp carotovera which 

causes the soft rot disease of potato tuber. Trichoderma 

isolates significantly slowed Erwinia growth. Disease 

incidence was reduced by 20.00% and 26.25% on potato 

slices treated with T. harzianum isolate 2 (TH2) and 

Trichoderma Viride isolate 3 (TV3), respectively 

compared to 94.25% in control. A considerable decrease 

in disease incidence was seen in tubers derived from 

tubers treated with TV3 and TH2, showing a disease 

severity of 20.27 and 16.47%, respectively, compared to 

90.42% in control. Tamizi et al. (2022) also identified 

Trichoderma spp. as a potential component of Erwinia 

spp. Biocontrol program. According to Baazeem et al. 

(2021); and Papaianni et al. (2020), the presence of T. 

hamatum and T. atroviride, hindered the growth and 

development of Xanthomonas campestris pv. campestris, 

Acidovorax avenae, and Erutima carafavora. During 

vegetable cultivation, the application of T. harzianum, T. 

virens, T. parareesei, T. asperellum, and T. viride 

suppressed the notorious bacteria such as Ralstonia 

solanacearum, Acidovorax citrulli, Clavibacter 

michiganensis subsp. michiganensis, Erwinia carotover, 

subsp. carotovera, E. mallotivora, Xanthomonas 

euvesicatoria, R. solanacearum, X. oryzae pv. oryzae, 

Pseudomonas syringae pv. lachrymans, X. campestris, X. 

campestris pv. campestris, Pectobacterium carotovorum 

subsp. Carotovorum, P. syringae pv. Tomato (Table 3). 

Globally, potato common scab causes substantial economic 

losses, and existing control measures are ineffectual. 

 
Table 3: Management of bacterial diseases using Trichoderma spp. as a bioagent  

Crops Diseases Pathogens Trichoderma spp. References 

Solanum lycopersicum Bacterial wilt Ralstonia solanacearum T. harzianum Yan and Khan (2021) 

In vitro  in vitro Acidovorax citrulli  Smirnova et al. (2018) 
S. lycopersicum Bacterial wilt Clavibacter michiganensis  Abo-Elyousr and 
  subsp. Michiganensis  Marei Almasaudi (2022) 
Solanum tuberosum Soft rot Erwinia carotover, Trichoderma spp. Sulaiman et al. (2020)  
  subsp carryover 
Carica papaya Dieback E. mallotivora  Tamizi et al. (2022) 
S. lycopersicum Bacterial spot Xanthomonas euvesicatoria  Fontenelle et al. (2011) 
S. lycopersicum Bacterial wilt R. solanacearum T. asperellum Konappa et al. (2018) 
Nicotiana tabacum In vitro X. oryzae pv. oryzae  Singh et al. (2019) 

Cucumis sativus In vitro Pseudomonas syringae  Yedidia et al. (2003) 
  pv. lachrymans 
In vitro  In vitro X. campestris T. hamatum  Baazeem et al. (2021) 
In vitro  In vitro X. campestris T. atroviride Papaianni et al. (2020) 
  pv. campestris 
Vegetables Bacterial soft rot Pectobacterium  T. viride Abd-El-Khair et al. (2021) 
  carotovorum subsp.  T. virens 
  carotovorum 

S. lycopersicum Bacterial blight  P. syringae pv. tomato T. parareesei Morán-Diez et al. (2020) 
   T. harzianum 
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However, biological control approaches have 

proven efficient against phytopathogens in various 

crops. Simultaneous field tests were conducted to 

compare the efficacy of T. asperellum and T. 

longibrachiatum in preventing potato scabs (Porto et al., 

2022). Based on yield losses caused by potato scab, the 

T. asperellum and T. longibrachiatum reduced disease 

severity from 80% in control to 34% and from 56% in 

control to 5%, respectively. In the second experiment, 

TA lowered disease severity by 61% compared to the 

control group (98%). These results indicate that 

Trichoderma spp. may be a feasible alternative for the 

control of bacterial plant diseases. 

Biocontrol of Viral Diseases 

Globally, plant viral diseases pose a serious threat to 

sustainable and productive agriculture and are responsible 

for several billion dollars in annual losses (Mumford et al., 

2016). Plant viruses are obligate hyperparasites that can 

cause devastating plant diseases during crop cultivation. 

It's responsible for partial or complete losses of the 

standing crops. The management strategies are different 

due to their unique characteristics. The virus is an 

infectious nucleoprotein particle that can replicate in a 

living cell. It can also remain the primary source in the 

living cell, such as a viable seed. Moreover, mono-

cropping with low genetic diversity and high plant density 

also exaggerates the virus diseases in the crop field. After 

secondary infection, viruses rapidly transmit the entire 

crop field through the vector likely, polyphagous 

arthropods, nematodes, and plant-parasitic fungi 

organisms (Walkey, 1991).  

On the contrary, it has no appropriate chemical 

substance for directly controlling viruses. In the running 

era, developing an effective virus management strategy is 

a burning issue. Among the different methods, the 

biological control methods are still the most efficient and 
practical tactic for controlling plant viruses across the 

globe. Although little is known about the impact of 

Trichoderma spp. on the induction of plant defenses 

against viruses, this fungus is effective against several 

mosaic viruses such as Tobacco Mosaic Virus (TMV), 

Cucumber Mosaic Virus (CMV), and Cucumber green 

mosaic virus (Table 4). Trichoderma spp. that colonizes 

plant roots can modulate the induction of systemic 

resistance against the Cucumber green mosaic virus (Lo et al., 

2000). A study evaluated T. asperellum SKT-1 for its 

ability to induce resistance against the yellow strain of 
Cucumber mosaic virus in Arabidopsis plants. 

Arabidopsis plants treated with barley grain inoculum and 

culture filtrate of SKT-1 showed a significant reduction in 

disease severity and CMV compared to control plants 

(Elsharkawy et al., 2013). Additionally, all Arabidopsis 

plants treated with SKT-1 exhibited significantly reduced 

disease severity and CMV compared to untreated control 

plants. Vitti et al. (2015) investigated the T22 strain of T. 

harzianum as a novel strategy for managing viruses, 

demonstrating its ability to enhance tomato defense 

responses against CMV. The mechanism of action of T22 

involves modulation of viral symptoms, inhibition of the 
RNA-dependent RNA polymerase gene, and the 

participation of Reactive Oxygen Species (ROS) as 

secondary messengers in the defense response against the 

virus. Similarly, Abdelkhalek et al. (2022) reported that the 

application of T. hamatum effectively controlled TMV. 

 
Table 4: Management of viral, protist, and nemic diseases using Trichoderma spp. as a bioagent 

Crops Diseases Pathogens Trichoderma spp. References 

S. lycopersicum Mosaic  Tobacco mosaic virus T. hamatum Abdelkhalek et al. (2022) 
S. lycopersicum Mosaic  Cucumber mosaic virus T. harzianum Vitti et al. (2016) 
Nicotiana tabacum Mosaic Tobacco mosaic virus T. koningii Taha et al. (2021) 
Cucumis sativus  Mosaic Cucumber green mosaic virus Trichoderma spp Lo et al. (2000) 

Brassica oleracea Clubroot Plasmodiophora brassicae  T. viride Adhikari et al. (2020) 
Crucifers  Clubroot P. brassicae T. harzianum  Yu et al. (2015) 
Brassica rapa Clubroot P. brassicae T. harzianum Li et al. (2020) 
   Trichoderma spp. Suada et al. (2019) 
S. lycopersicum Root-knot Meloidogyne incognita T. harzianum Khan et al. (2018) 
Field crops Root-knot M. javanica  Sahebani and Hadavi (2008) 
Cicer arietinum Root-knot M. incognita  Rizvi et al. (2018) 
Helianthus annuus Root-knot M. incognita  Haggag and Amin (2001) 

S. lycopersicum Root-knot M. incognita T. viride Sahebani and Hadavi (2008) 
H. annuus Root-knot M. incognita  Haggag and Amin (2001) 
Solanum tuberosum Cyst-forming Globodera rostochiensis  Bairwa et al. (2017) 
  G. pallida  Lima et al. (2018) 
Field crops  Cyst-forming Heterodera avenae T. longibrachiaum Zhang et al. (2014) 
S. lycopersicum Root-knot M. incognita T. citrinoviride Fan et al. (2020) 
Saccharum officinarum Root-knot M. incognita Trichoderma spp. Freitas et al. (2012) 
G. max Root-knot Meloidogyne spp.  Elhady et al. (2018) 
Arabidopsis Yellow strain  Cucumber mosaic virus T. asperellum Elsharkawy et al. (2013) 
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Biocontrol of Protist Diseases 

Protista is a unicellular eukaryotic microorganism. 

They also cause severe diseases in the plant and animal 

communities. Plasmodiophora brassicae of Protista is 

one of the most important examples, which can cause 

clubroot disease in the Cruciferae family, resulting in 

significant economic yield loss (Howard et al., 2010). 

Controlling clubroot has long been a primary concern all 

over the world. The spread of P. brassicae spores is rapid 

and facilitated by contaminated soil, farm equipment, 

infected plant materials, and surface water. The resilient 

resting spores can persist in the soil for extended periods. 

In the absence of effective control measures against P. 

brassicae, there is a pressing need to explore novel 

management approaches. The biological control method 

has proven highly effective in reducing soil-borne 

diseases like clubroot. Trichoderma species have been 

extensively studied as bio-agents against protists, such as 

P. brassicae (Table 4). In greenhouse pot trials, the 

application of the T. harzianum strain T4 reduced P. 

brassicae incidence in Chinese cabbage by 79% (Yu et al., 

2015). Another study demonstrated the biocontrol 

efficacy of T. harzianum strain LTR-2 against P. 

brassicae in field conditions, reducing disease incidence 

from 96.7-51.3% in Chinese cabbage (Li et al., 2020). 

Zhao et al. (2022) identified two strains, Trichoderma 

guizhouense Hz36 and T. koningiopsis Hk37 from 

clubroot-infected rapeseed fields with biocontrol potential 

against clubroot. The biocontrol efficiency of Hz36 strain 

on clubroot in rapeseed and A. thaliana was 44.29 and 

52.18%, respectively. Strain Hk37 exhibited similar 

effects, with biocontrol efficiencies of 57.30% in rapeseed 

and 68.01% in A. thaliana. T. viride also showed 

effectiveness as a bio-fungicide against cauliflower 

clubroot (Adhikari et al., 2020). When mixed with 

organic fertilizer containing actinomycetes, Trichoderma 

application prevented clubroot disease (Joo et al., 2004). 

Trichoderma spp. has the potential to effectively control 

protist diseases. These findings focus on the promising 

potential of Trichoderma strains for clubroot biocontrol. 

Biocontrol of Nematode Diseases 

Phytonematode represents a serious threat to the 

agricultural production system, causing a 12.3% loss in 

global yield (Singh et al., 2015). Even though chemical 

nematicides have a residual effect, growers use them to 

combat nematodes during crop cultivation. Numerous 

studies have explored the effectiveness of Trichoderma as 

a bio-agent against plant parasitic nematodes such as root-

knot, and cyst-forming (Table 4). In greenhouse 

experiments, the inoculation of tomato seeds with T. 

harzianum significantly diminished the impact of 

Meloidogyne javanica, influencing its establishment, 

development, and reproductive capacity. This was evident 

through various parameters including the reduction in the 

number of galls and egg masses per plant and the number 

of eggs within each mass (Sahebani and Hadavi, 2008). 

Additionally, a remarkable decrease in egg hatching was 

observed, indicating that this particular Trichoderma sp. 

holds promise as a bio-agent against plant parasite 

nematode. Similarly, T. harzianum's presence in tomato 

roots hindered nematode performance at various stages of 

parasitism, including invasion, production of gall, and 

reproduction of the nematodes (Martínez‐Medina et al. 

2017). The impact of suspension culture and exudates 

from five Trichoderma species such as T. harzianum, T. 

viride, T. virens, T. hamatum, and T. koningii on 

controlling M. incognita on tomato plants was 

investigated. Fungus metabolites from liquid culture 

significantly affected the production of egg hatching and 

increased the juvenile mortality rate of M. incognita. Soil 

application of culture suspension containing fungus 

spores had a greater detrimental effect on juvenile 

populations while enhancing plant growth more 

effectively than fungus exudates (Khan and Mohiddin, 

2018). T. harzianum exhibited the most effective 

nematode control performance. In open-field conditions, 

T. harzianum inhibited M. javanica egg hatching 

(Naserinasab et al., 2011). Under in vitro conditions T. 

harzianum, T. koningii, and T. viride caused over 50% 

mortality in M. javanica juveniles (Qureshi et al., 2012). 

T. asperellum M2RT4 decreased gall formation, egg 

mass, and egg production in pineapple roots in Kenya 

(Kiriga et al., 2018). Other Trichoderma species such as 

T. asperelloides, T. harzianum, T. viride, and T. 

hamatum exhibited chitinase activity and antagonistic 

effects against M. incognita in tomatoes. T. 

asperelloides significantly reduced root gall formation 

and total nematode population (Sayed et al., 2019). 

Trichoderma demonstrates significant potential as a 

biocontrol agent against not only root-knot nematodes 

but also cyst nematodes through direct parasitism of 

eggs and larvae. T. longibrachiatum has a strong 

inhibitory effect on Heterodera avenae cyst hatching due 

to complete spore coverage, leading to cyst destruction 

(Zhang et al., 2014). T. longibrachiatum also affects 

female development and H. avenae egg and juvenile 

stages (Zhang et al., 2017). Contina et al. (2017) utilized 

a GFP-labeled strain of T. harzianum to demonstrate 

reduced infection and reproduction of Globodera 

pallida. The fungus negatively impacted both cysts and 

juveniles of G. pallida but did not affect eggs. 

Additionally, T. harzianum established hyphal 

colonization in potato rhizoplane and rhizosphere, 

potentially providing long-term protection against 

infection. Numerous studies highlight the potential of 

the genus Trichoderma to efficiently suppress plant-

parasitic nematodes through direct interaction. 
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Biocontrol Mechanisms of Trichoderma Strain 

The management of diseases with the assistance of 

Trichoderma arises from the interactions between the bio-

agent and plant pathogenic populations. Trichoderma 

species have been extensively researched and 

commercially utilized as agents for biological control, soil 

enhancement, and biofertilization owing to their 

capability to protect plants and regulate pathogen 

populations across diverse soil conditions. Generally, the 

mechanisms underlying biocontrol can be divided into 

two main categories (Fig. 4). The first involves a direct 

process where Trichoderma antagonizes, lyses, kills, or 

parasitizes the pathogen. Antibiosis, mycoparasitism, and 

competition are the primary strategies employed by 

Trichoderma in directly combating fungal pathogens. The 

other mechanism is an indirect approach in which 

Trichoderma creates an unfavorable infection environment. 

Induced resistance represents the primary indirect 

mechanism employed by Trichoderma (Hossain, 2024). 

Antibiosis 

Antibiosis is the process through which a microbe 

inhibits the growth of other microbes by secreting a low-

molecular-weight, diffusible chemical. Antibiosis focuses 

primarily on generating secondary metabolites with an 
inhibiting or lethal effect on a parasitic fungus (Fig. 5). 

More than one hundred eighty 2° metabolites representing 

diverse chemical product classes have been identified 

from Trichoderma (Reino et al., 2007; Masi et al., 2018). 

These compounds can be categorized based on their 

metabolic origins as peptaibol, polyketide, or terpene. 

Trichoderma spp. are recognized producers of peptaibols, 

which are polypeptide antibiotics characterized by a 

molecular weight ranging from 500-2200 Da and 

comprised of non-proteinogenic amino acids, notably α-

aminoisobutyric acid (Turaga et al., 2020). These 
molecules feature an acetylated N-terminus and amino 

alcohols at the C-terminus, rendering them amphipathic in 

nature and capable of forming voltage-gated ion channels 

in membranes. Peptaibols are synthesized by Non-

Ribosomal Peptide Synthetases (NRPSs). 
 

 
 
Fig. 4: Biocontrol mechanisms of Trichoderma against plant 

pathogens 

 
 
Fig. 5: Antagonism of Trichoderma against plant pathogens. 

(A), (C), (E) and (G) Rhizoctonia solani, Sclerotium 
rolfsii, Fusarium oxysporum and Colletotrichum capsici 
culture without Trichoderma, respectively. (B), (D), (F) 
and (H) R. solani, S. rolfsii, F. oxysporum and C. capsici 

culture with Trichoderma isolate Pb-22, respectively 
 

Trichoderma spp. can also synthesize the secondary 

types of defensive metabolite, known as polyketides, 

through sequential actions catalyzed by a complex of 

enzymes known as polyketide synthases. T. viride 

produces trichotoxins A and B, trichocellins, 

trichodecenins, and trichorovins whereas other 

Trichoderma strains produce a vast array of antibiotics 
(Reino et al., 2007). Trichorzianins A and B, HA, MA and 

trichorzins were also recovered from T. harzianum culture 

filtrate. Interestingly, T. longibrachiatum can produce 

tricholongins BI and BII, while T. koningii yields 

trichokonins and longibrachins; T. atroviride cultures 

yield neoatroviridins A-D and atroviridins A-C. In 

addition, T. aureoviride, T. viride, T. hamatum, T. 

koningii, T. harzianum, T. virens, and T. lignorum 

cultures yielded additional antibacterial and fungicidal 

compounds, such as trichoviridin, koningins, dermadin, 

koningic acid and lignoren, viridin, (Reino et al., 2007). 

Gliovirin and gliotoxin are two of the most important 2° 
metabolites produced by Trichoderma strains belonging to 

the P and Q groups, respectively. T. virens P group strains 

negatively impact Pythium ultimum, but not R. solani. 

However, the Q group is more aggressive against R. solani 

(Howell et al., 2000). T. virens gene veA ortholog vel1 

encodes the VELVET protein, which regulates the 

production and biocontrol action of gliotoxin and other 

genes involved in 2° metabolism (Mukherjee et al., 2012). 
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T. viride produces trichotoxins A and B, trichocellins, 

trichodecenins, and trichorovins whereas other 

Trichoderma strains produce a vast array of antibiotics 

(Reino et al., 2007). Trichorzianins A and B, HA, MA and 

trichorzins were also recovered from T. harzianum culture 

filtrate. Interestingly, T. longibrachiatum can produce 

tricholongins BI and BII, while T. koningii yields 

trichokonins and longibrachins; T. atroviride cultures 

yield neoatroviridins A-D and atroviridins A-C. In 

addition, T. aureoviride, T. viride, T. hamatum, T. 

koningii, T. harzianum, T. virens, and T. lignorum cultures 

yielded additional antibacterial and fungicidal 

compounds, such as trichoviridin, koningins, dermadin, 

koningic acid and lignoren, viridin, (Reino et al., 2007). 

Gliovirin and gliotoxin are two of the most important 2° 

metabolites produced by Trichoderma strains belonging 

to the P and Q groups, respectively. Trichoderma 

(Gliocladium) virens P group strains negatively impact 

Pythium ultimum, but not R. solani. However, the Q group 

is more aggressive against R. solani (Howell et al., 2000). 

T. virens gene veA ortholog vel1 encodes the VELVET 

protein, which regulates the production and biocontrol 

action of gliotoxin and other genes involved in 2° 

metabolism (Mukherjee et al., 2012). 

In the presence of Koninginin D, the growth of soil-

borne pathogens such as R. solani, Fusarium oxysporum, 

Pythium middletonii, Bipolaris sorokiniana, and 

Phytophthora cinnamomic was reported to be inhibited 

(Dunlop et al., 1989). Viridins derived from Trichoderma 

spp. Such as T. viride, T. virens, and T. koningii inhibited 

the germination of Botrytis allii, Aspergillus Niger, 

Fusarium caeruleum, Penicillium expansum Stachybotrys 

atra and Colletotrichum lini spores (Singh et al., 2005). 

Harzianic acid produced from T. harzianum exhibited 

antibacterial activity against Sclerotinia sclerotiorum, 

Pythium irregulare, and R. solani in vitro (Manganiello et al., 

2018). T. asperellum strain generated two asperelines (A 

and E) and five trichotoxins called T5G, T5D2, 1717A, 

T5E, and T5F with antibiotic properties (Brito et al., 2014). 

In many cases, the antibiotic effect is combined with lytic 

enzymes, resulting in enhanced antagonistic activity 

compared to antibiotics or enzymes acting independently 

(Monte, 2001). According to Howell (2003), the initial 

breakdown of cell walls by lytic enzymes, as observed in F. 

oxysporum and B. cinerea facilitates improved penetration 

of antibiotics into the target hyphae. 

Mycoparasitism 

Parasitism delineates a symbiotic relationship between 

two organisms where one benefits while the other is 

adversely affected. Mycoparasitism refers to a form of 

association wherein a parasitic fungus, known as a 

hyperparasite, thrives as a parasite on another fungus, 

termed a hypoparasite. It is also referred to as 

hyperparasitism when biocontrol fungi, acting as 

hyperparasites, parasitize pathogenic fungi, the 

hypoparasites, to utilize them as a source of nutrients. 

Hyperparasites generate parasitizing hyphae to acquire 

nutrients from the host. The bio-agent ensnares the 

pathogen by coiling around its hyphae. Trichoderma 

demonstrates the ability to hyperparasitize and secrete 

hydrolytic enzymes, such as chitinases, cellulases, 

xylanases, glucanases, and proteinases, which degrade the 

host's cell wall. It identifies the host fungus and initiates 

attack through hyphal diffusion preceding cell lysis. The 

interaction between the parasitic fungus and the host 

(pathogen) involves coiling, haustoria formation, 

secretion of various hydrolytic enzymes aiding hyphal 

penetration, production of antimicrobial metabolites, host 

demise, and subsequent nutrient extraction from the 

decomposed organic matter (Omann et al., 2012). Several 

studies demonstrate that numerous Trichoderma strains 

attack and destroy plant-pathogenic fungi, such as Fusarium 

spp., Pythium spp., R. solani, Ustilago maydis, Alternaria 

alternata, S. rolfsii, Botrytis cinerea and Meloidogyne 

javanica through mycoparasitism (Harman et al., 2004; 

Druzhinina et al., 2011). During parasitism, T. harzianum 

isolates 203 parasitizes S. rolfsii and generates hydrolytic 

enzymes, chitinase, and (1,3) glucanase inside the 

attacked sclerotia. (Elad et al., 1984). T. harzianum-248 

parasitized the Meloidogyne javanica and declined 

reproduction such as eggs (Sharon et al., 2009). 

Trichoderma interacted with R. solani and coiled around 

the host cells, penetrating, plasmolysis, and destroying the 

hyphae (Tzavella-Klonari and Deligianni-Mappa, 1991). T. 

atroviride and T. harzianum parasitized the seed and soil-

borne Fusarium fungus (Sharma, 2011). It has been 

demonstrated that about 20-30 known genes, proteins, or 

metabolites are engaged in this activity (Lorito et al., 1998).  

Competition  

The inadequate supply and contest for nutrients result 

in the natural control of phytopathogen populations. 

Competition for micro- and macronutrients, such as 

carbon, nitrogen, and iron, plays a crucial role in 

interactions between beneficial and harmful fungi. 

Trichoderma species struggle with pathogens for 
resources, colonization niches, and infection sites in the 

rhizosphere. Trichoderma is superior to other 

rhizospheric microorganisms in its ability to mobilize 

resources and occupy niches. Trichoderma outperforms 

other soil microbes in competent mobilization and 

utilization of immobilized nutrients. Trichoderma 

achieves this by lowering soil pH through biosynthesis 

and releasing organic acids such as gluconic, and fumaric. 

Furthermore, these organic acids aid in the solubilization 

of micronutrients and mineral cations such as phosphates, 

magnesium, iron, and manganese, (Vinale et al., 2008). 

Additionally, Fe ions act as cofactors for various enzymes 
and are essential nutrients for plant growth and 
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development (Miethke, 2013). In the presence of oxygen 

with pH 7 iron exists primarily as Fe3+. In an aerobic 

environment, Fe tends to form an insoluble ferric oxide, 

rendering it unavailable for root absorption (Miethke, 

2013). Trichoderma spp. Secretes an iron-chelating 
compound known as a siderophore. This complex binds to 

insoluble Fe3+ and converts it to the easily absorbable 

soluble form Fe2+. Siderophore increases the availability of 

Fe to plants while simultaneously depleting soil Fe sources, 

inhibiting the growth of target fungi (Srivastava et al., 

2018). Fungal siderophores identified to date are 

commonly classified as hydroxamates and are categorized 

into three families for instance, fusarinines, coprogens, 

and ferrichromes. Trichoderma produces various types of 

siderophores, which play a crucial role in enabling fungi 

to withstand unfavorable soil conditions. Siderophores 

synthesized by antagonistic fungi can potentially hinder 
the growth and progression of plant pathogens by 

sequestering iron nutrients, thereby limiting their 

availability (Mukherjee et al., 2012). 

Induced Plant Resistance 

Trichoderma and other microbial biocontrol agents 

are commonly employed in sustainable agriculture to 

manage crop diseases and boost plant productivity. 

Trichoderma can colonize plants and induce systemic and 

local resistance to various plant diseases (Harman et al., 
2004; Shoresh et al., 2010). Induce Systemic Resistant 

(ISR) is one of several biocontrol techniques of 

Trichoderma for evading plant diseases by triggering a 

defensive reaction. ISR mediated by Trichoderma 

species in plants involves the activation of augmented 

defense responses against invading pathogens. Induction 
of Pathogenesis-Related (PR) proteins such as 

glucanases and chitinases and the mechanical 

strengthening of cell walls via lignification are also 

observed in Trichoderma-induced plants (Table 5). 

Other significant plant defense enzymes synthesizing 

phenolic antimicrobial chemicals include phenylalanine-

ammonia-lyase, polyphenol oxidase, and peroxidase 

(Patel and Saraf, 2017). The 2° metabolites 6-pentyl-

pyrone and harzionalide produced by T. atroviride and 

T. harzianum can also induce systemic defensive 

responses in tomato and oilseed rape seedlings against 
Leptosphaeria maculans and B. cinerea (Vinale et al. 

2008). T. virens produces peptaibols of fourteen and 

eighteen amino acids, each with a range of isoforms that 

elicit systemic resistance (Viterbo et al., 2007). 

Trichoderma spp., in fact, interacts with a plant's defense 

system during root colonization by releasing 

antimicrobial compounds (e.g., phytoalexins). The 

interaction with plants in the early stages of root 

colonization may trigger cell detoxification and plant 

defense mechanisms (Ruocco et al., 2009). Inducing 

terpenoid phytoalexins toxic by T. virens protects Gossypium 

hirsutum from R. solani (Kumar and Palakshappa, 2009).  
 
Table 5: Trichoderma spp. elicit Induced Systemic Resistance (ISR) chemical compounds  

Trichoderma spp. Crops Pathogens  Products  References  

T. virens Gossypium hirsutum Rhizoctonia solani  Inducing terpenoid phytoalexins toxic  Kumar and 
   for protecting plants against fungi Palakshappa (2009) 
 Solanum lycopersicum Pseudomonas Producing proteins-Sm1 and Ep11 to Salas-Marina et al.  
  syringe  induces systemic resistance in plants  (2015) 
Trichoderma spp. Musa sapientum F. oxysporum f.  ISR-based induction of PAL, POs, Bubici et al. (2019) 
  sp. cubense and surge in total phenolic compound 
T. koningii M. sapientum F. oxysporum f.  ISR-based induction of PAL, POs, Thangavelu and 
  sp. cubense and surge in total phenolic compound Mustafa (2010) 
T. peudokoningii M. sapientum F. oxysporum f.  ISR-based induction of PAL, POs, Thangavelu and 
  sp. cubense and surge in total phenolic compound Gopi (2015) 
T. hamatum M. sapientum F. oxysporum f.  ISR-based induction of PAL, POs, Thangavelu and 
  sp. cubense and surge in total phenolic compound Gopi (2015) 
T. harzianum  Nicotiana tabacum Ralstonia  ISR-based intensification in POX, Yuan et al. (2016) 
  solanacearum PPO, and PAL actions Maketon et al. (2008) 
 Piper nigrum Phytophthora Producing of the phytoalexins capsidiol  Ahamed and 
  capsici toxic for protecting plants against fungi Vermette (2009) 
 Cicer arietinum S. rolfsii Induced phenolic compounds Singh et al. (2013) 
 P. vulgaris F. solani Producing of PPO, PO, and chitinase. Abd-El-Khair et al.  
    (2019) 
T. atroviride Arabidopsis thaliana B. cinerea  Phytostimulation, salicylic acid, Contreras-Cornejo et al.  
   Jasmonic acid, and camalexin (2011) 
Trichoderma  Solanum melongena Sclerotium rolfsii Rise in phenolic content,  Bisen et al. (2019) 
   predominantly gallic, shikimic,  
   t-chlorogenic, and syringic acid  
T. viride P. vulgaris F. oxysporum f.  Involvement of volatile metabolites in  Carvalho et al. (2014) 
  sp. phaseoli reducing fox 
 M. sapientum F. oxysporum f.  ISR-based induction of PAL, POs, Thangavelu et al. 
  sp. cubense and phenolic compound (2004) 
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T. virens helps to stimulate defense responses, JA, 

salicylic acid, and camalexin production in Arabidopsis 

for controlling the infestation from B. cinerea (Contreras-

Cornejo et al., 2011). ISR elicited by Trichoderma spp., 

T. peudokoningii, T. koningii, T. hamatum, T. harzianum, 
against F. oxysporum f. sp. cubense and Ralstonia 

solanacearum was associated with induction of POs, PAL 

and surge in total phenolic compound (Maketon et al. 

2008; Thangavelu and Mustafa, 2010; Thangavelu and 

Gopi, 2015; Thangavelu and Gopi, 2015; Yuan et al., 

2016; Bubici et al., 2019) (Table 5). 

Bulk Production of Trichoderma Formulation 

Developing a functioning product, formulation and 

delivery system is the core of successful biological 
control methods for effective plant disease 

management practice. Bulk production, quality control, 

delivery, and its scope in commercialization are 

essential for developing any Trichoderma formulation. 

Cost-effective mass propagation of Trichoderma could 

only support an ample supply of the agent. According 

to Nakkeeran et al. (2006), an ideal inoculant 

formulation should meet shelf life, non-phytotoxicity, 

solubility in water and quickly release the microbial 

inoculants, tolerance to an adverse environment, cost-

effective, capability of controlling plant diseases and 
availability of the raw materials. Trichoderma's mass 

production systems should be compatible with 

industrial and commercial expansion processes and 

field applications. There are two basic ways for mass 

production of Trichoderma inoculum, where one is 

solid and another is liquid state fermentation. 
Considering the cost of the substrates, solid 

fermentation appears to be more suitable and 

economical for large-scale production of Trichoderma. 

A variety of low-cost organic materials can be 

employed as substrates (Jeyarajan, 2006; Rubayet and 

Bhuiyan, 2012, Faruk et al., 2015). Many researchers 

found that rice bran, wheat bran, grass pea bran, 

mustard oilcake, corn, chickpea meal, tea waste, 

millets, rice straw, sugar beet pulp, sorghum grain, corn 

bagasse, sugarcane bagasse, and fortified compost such 

as poultry refuse as suitable ingredients for bulk 
production of Trichoderma spp. (Rubayet and Bhuiyan, 

2012; Boblina et al., 2019; Naeimi et al., 2020; Simon 

and Anamika, 2011; Pandya et al., 2012; Rini and 

Sulochana, 2007; Singh et al., 2014; Kumar and 

Palakshappa, 2009; Tewari and Bhanu, 2004; Mulatu et al., 

2021; Kumar and Sahu, 2014; Rahman et al., 2024; 

Chowdhury et al. 2024) (Table 6). These substrates can 

be prepared singly or as a mixture of different 

substrates in varying proportions. Despite its many 

advantages, it has some disadvantages, notably the time 

and space required for inoculum preparation. 
 
Table 6: Different substrates are used for the production of Trichoderma spp. 

Trichoderma spp. Suitable substrates References 

T. polysporum Sorghum grains Rajput and Shahzad (2015) 

T. harzianum Wheat grain Rubayet and Bhuiyan (2012) 

 Vermicompost Boblina et al. (2019) 

 Rice straw and husk, pulp of sugar beet, broom sorghum grain,  Naeimi et al. (2020) 

 and cow dung 

 Wastes of spinach, banana, papaya, tealeaves guava, brinjal, pea husk,  Simon and Anamika (2011) 

 and sugarcane 

 Sorghum grain Pandya et al. (2012) 

 Coir pith + neem cake (1:1) Rini and Sulochana (2007) 

 Mushroom compost Singh et al. (2014) 

 Maize grain Kumar and Palakshappa (2009) 

 Wheat bran and paddy straw Tewari and Bhanu (2004) 

 Poultry Refuse  Rahman et al. (2024);  

  Chowdhury et al. (2024) 

T. viride  Wastes of spinach, banana, papaya, tealeaves guava, brinjal, pea husk,  Simon and Anamika (2011) 

 and sugarcane 

 Coir pith + neem cake (1:1) Rini and Sulochana (2007) 

 Dried lima bean shell Yparraguirre and  

  Galliani-Pinillos (2020) 

T. longibrachiatum  Wheat bran and white rice and (2:1 w/w) Mulatu et al. (2021) 

T. asperellum  Wheat bran and white rice and (2:1 w/w) Mulatu et al. (2021) 

Trichoderma spp. Cotton husks Ramos et al. (2008) 

 Compost and paddy husk Irfeey et al. (2018) 

 Millet  Kumar and Sahu (2014) 
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On the other hand, liquid-state fermentation is used to 

plenty production of Trichoderma inoculum in a fluid 

medium before applying it in the field (Rajesh et al., 

2016). This technique is so easy and efficient for 

maximum Trichoderma biomass and inoculum 

production. Molasses yeast medium, Potato Dextrose 

Broth (PDB), and V8 juice are commonly used as the 

liquid-based substrate for large-scale production of T. 

harzianum Rifai (Hassan, 2014). Commercial uses of 

Trichoderma spp. for promoting crop health and 

managing plant diseases rely on developing commercial 

formulations with suitable carriers that enable 

Trichoderma spp. to endure indeterminately. 

Formulations such as talc, vermiculite-wheat bran, pasta 

granules, alginate prills, press mud, coffee husk and oil, 

and banana waste-based formulations are commonly used 

for enhancing the Trichoderma shelf life (Jeyarajan et al., 

1994; Lewis and Papavizas, 1991; Connick et al., 1991; 

Prasad and Rangeswaran, 1998; Jeyarajan, 2006; Sawant 

and Sawant, 1996) (Table 7). As a carrier material, 

several types of organic well-decomposed composts 

such as a farmyard, vermicompost, poultry refuse, and 

cow dung are occasionally used. Using such 

Trichoderma formulations reduces plant disease and 

increases soil fertility. Because the shelf life of a bio-

agent is critical to its successful commercialization. In 

general, antagonists formulated in an organic food base 

have an extended shelf life than those formulated in an 

inorganic or inert food base. The shelf life of 

Trichoderma formulation in coffee husk is >18 months, 

whereas talc, peat, lignite, and kaolin shelf life of 3-4 

months. Trichoderma propagules in talc formulation lost 

50% of their viability after 120 days of storage (Sankar and 

Jeyarajan, 1996). However, Bhat et al. (2009) reported 

that talc-based formulations stored at room temperature 

had a shelf life of up to 180 days. 

Trichoderma Metabolites as Potent Biopesticides 

Secondary Metabolites (SMs) play a significant role in the 
complicated interactions among bio-agents, plants, and 
pathogens. The SMs biosynthesized by microbes are 
natural chemicals of low molecular weight (usually 3 
kDa) and are typically unique to genera, species, or strains 
(Vinale et al., 2009). These chemicals have been shown 
to reduce the proliferation and destructive actions of 
pathogens directly and augment disease resistance by 
triggering the plant defensive system. Trichoderma 
species secrete a multitude of metabolites while having 
minimal nutritional requirements. These metabolites can 

be used for agricultural, industrial, and medical purposes, 
making them essential to humans. Several Trichoderma 
spp. Show antifungal activities against phytopathogenic 
fungi, which may involve various classes of SMs such as 
gliovirin, terpenes, gliotoxin, pyrones, and peptaibols 
(Vinale et al., 2008) (Table 8). Gliotoxin plays a crucial 
role in the biocontrol activity of Trichoderma virens 
against specific plant pathogenic fungi (Vey et al. 2001). 
T. virens biocontrol strains also generate gliotoxin, which 
was effective against R. bataticola, Macrophomina 
phaseolina, Pythium deharyanum, and Pythium 
aphanidermatum (Khan et al., 2020). Gliovirin, an 

additional member of this class of toxins is primarily 
produced by a strain of Trichoderma longibrachiatum and 
T. virens. Gliovirin and its analogs were antifungal against 
R. solani and Pythium ultimum (Nakano et al., 1990). 
Peptaibols are linear peptides composed of α, α-
dialkylated amino acids, isovaline, amino isobutyric acid 
(Aib), an acetylated N-terminus, and a C-terminal amino 
alcohol. Peptaibols are primarily produced by 
Trichoderma species. Three peptaibols derived from 
Trichoderma koningii, trichokonins VI, VII, and VIII, 
exhibited broad-spectrum antimicrobial activity against a 
broad range of plant pathogens, including Verticillium 

dahliae, Fusarium oxysporum, R. solani and Botrytis 
cinerea (Khan et al., 2020). 

 
Table 7: List of different formulations developed using Trichoderma spp. 

Types Ingredients References  

Formulation based on talc Liquid medium + talc powder (1:2) Jeyarajan et al. (1994) 
Vermiculite-wheat bran  Vermiculite = 100 g Lewis and Papavizas (1991) 
 Wheat bran = 33 g 
 Wet fermentor biomass = 20 g 
 and 0.05N HCL = 175 mL Connick et al. (1991) 
Pesta granules Wheat flour (WF) = 100 g 
 Fermentor Biomass (FB) = 52 mL 
 Sufficient sterile water up to form a dough 
Wheat flour- kaolin WF = 80 gm; Kaolin = 20 gm Prasad and Rangeswaran (1998) 
 FB = 52 mL  
Alginate prills Sodium Alginate = 25 gm Fravel et al. (1995) 
 WF = 50 gm; FB = 200 mL 
Press mud A mixture of mud and organic manure  Jeyarajan (2006) 
Coffee husk Main component of coffee husk Sawant and Sawant (1996) 
Formulation based on oil- Vegetable or mineral oils in stable emulsion formulation Batta (2007) 
Agro-product-based formulation  Suspension mixed with corn and sugarcane bagasse Doni et al. (2014) 
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Table 8: List of Trichoderma 2° metabolites as potent biopesticides against plant pathogens 

Trichoderma spp. 2° metabolites References 

T. virens Gliotoxin Hua et al. (2021) 
 Cell wall-degrading biochemical materials such as β-1,3-glucanase & chitinase Hirpara et al. (2017) 
T. koningii  Secretion defense enzymes, β-glucanase, and chitinase produced by  Kamel et al. (2020) 
 IAA and Gibberellic 
Trichoderma spp. Phenylalanine ammonia-lyase, chitinase, glucanase, and peroxidase Maddu and Ravuri (2021) 
T. viride Secretion defense enzymes and growth hormones susch as  Kamel et al. (2020) 
 chitinase and Gibberellic 
 Inorganic phosphate, IAA, and siderophore Kotasthane et al. (2015) 
 Steroids and alkaloids Muhibbudin et al. (2021) 
 Volatile metabolites Amin et al. (2010) 
 6-Pentyl pyron Kotasthane et al. (2015) 
 Caryophyllene oxide Awad et al. (2018) 
T. harzianum Secretion defense enzyme, chitinase, and β-glucanase produced IAA  Kamel et al. (2020) 
 and Gibberellic 
 Induce defense enzymes (2-3 folds) and phenolic content (3 folds) Muthukumar and 
  Venkatesh (2014) 
 Volatile metabolites Shaigan et al. (2008) 
 Dermin, gliotoxin, glioviridin, trichodermin, and viridin Eziashi et al. (2007) 
 β-glucanase, β-glucosidase, gliotoxin, hydrazinopyridine, harziandione,  Vinale et al. (2008) 
 peptaibols, trichodermin, and viridin 
 Volatile (toxic) and nonvolatile metabolites Swathi et al. (2015) 
 Cellulase Rashmi et al. (2016) 
 Cell Wall Degrading Enzymes (CWDE) John et al. (2015) 
T. longibrachiatum  1-butanol 2-methyl, cedrene, caryophyllene, cuprenene, and longifolene Sridharan et al. (2020-2021) 
 Volatile Organic Compounds (VOC)  Sridharan et al. (2020) 
T. asperellum CWDE John et al. (2015) 
 Butenolides, cyclonerodiol, ferulic acid, gliovirin massoilactone,  Srinivasa et al. (2017) 
 harzianolides, viridiofungin A, viridin, and viridiol  
T. hamatum Volatile metabolites Shaigan et al. (2008) 
T. atroviride  Glucanase Rashmi et al. (2016) 

 

Isolated from Trichoderma pseudokoningii, Trichokonin 

VI induced extensive apoptotic programmed cell death in 

Phytophthora parasitica, B. cinerea, Ascochyta citrullina, 

F. oxysporum, and V. dahlia (Shi et al., 2012). 

Trichokonins were also highly active for Clavibacter spp., 

a pathogen that infects economically significant crops 

such as maize, potato, and tomato (Meletzus and 

Eichenlaub, 1991). The peptaibols trichorzianine A1 and 

B1 from T. harzianum could inhibit the spore germination 
and hyphal elongation of plant pathogenic fungi (Lee et al., 

1999). The volatile organic compound Pyrone 6-PP was 

reported to be produced by T. koningii, T. viride, and T. 

harzianum. At a concentration of 0.3 mg/mL, it inhibited 

the growth of F. oxysporum by 31.7% and R. solani by 

69.6%, respectively (Khan et al., 2020). It was discovered 

that T. harzianum produces three bioactive analogs of 

pyrone 6-PP (Parker et al., 1997). Another pyrone analog, 

viridepyronone, was made by a strain of T. viride and 

inhibited the growth of S. rolfsii by 90% at a minimum 

inhibitory concentration of 196 mg/ml (Evidente et al., 
2003). Harzianolide and T39 butenolide are antifungal 

butenolide compounds, which were isolated from strains 

of T. harzianum. These compounds were all antifungal 

against P. ultimum, Gaeumannomyces graminis var. 

tritici, and R. solani (Vinale et al., 2006). The antifungal 

harzianopyridone was isolated from T. harzianum, which 

contains a 2,3-dimethoxy-4-pyridinol-patterned pyridine 

ring system (Vinale et al., 2006). The racemic form of 

harzianopyridone exhibited potent antifungal activity 

against plant-pathogenic fungi, including R. solani, P. 

ultimum, G. graminis var. tritici, Botrytis cinerea, 

Phytophthora cinnamomi and Leptosphaeria maculans 

(Vinale et al., 2009). The azaphilones, such as 

harziphilone, fleephilone, and T22 azaphilone produced 

by T. harzianum, exposed substantial antifungal activity 
counter to B. cinerea, P. ultimum, G. graminis var. tritici, 

P. cinnamomi, R. solani and L. maculans (Vinale et al., 

2006; 2009). T. koningii and T. harzianum produced 

stigmasterol, which exhibited antifungal activity against 

M. phaseolina, S. rolfsii, F. oxysporum, and R. solan 

(Ahluwalia et al., 2015). Two other steroids isolated from 

Trichoderma sp. YM 311505, ergosterol, and 3,5,9-

trihydroxyergosta-7,22-dien-6-one exhibited potent 

antifungal activity against Aspergillus niger, Pyricularia 

oryzae, Alternaria alternata, and Candida albicans with 

MIC values of 32 g/mL (Xuan et al., 2014). Three 
anthraquinones including 1,8-dihydroxy-3-

methylanthraquinone, 1-hydroxy-3-methylanthraquinone 

(34), and 6-methyl-1,3,8-trihydroxyanthraquinone were 

identified in T. harzianum strains and found effective 

against M. phaseolina, R. solani, F. oxysporum and S. 

rolfsii (Ahluwalia et al., 2015). 

https://pubmed.ncbi.nlm.nih.gov/?term=Hirpara+DG&cauthor_id=28081530
https://link.springer.com/article/10.1007/s10658-014-0560-0#auth-Anil-Kotasthane
https://pubmed.ncbi.nlm.nih.gov/?term=Shaigan+S&cauthor_id=19137869
https://link.springer.com/article/10.1007/s42360-020-00288-x#ref-CR30
https://www.frontiersin.org/articles/10.3389/fmicb.2022.772417/full#ref67
https://www.frontiersin.org/articles/10.3389/fmicb.2022.772417/full#ref66
https://pubmed.ncbi.nlm.nih.gov/?term=Shaigan+S&cauthor_id=19137869
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Conclusion and Future Perspectives 

Organic agriculture necessitates prioritizing organic 

fertilizers and biopesticides to promote sustainable 

farming practices. Among microbial agents, Trichoderma 

has demonstrated exceptional potential as both a 

biofertilizer and biocontrol agent. Its enhanced 

competitive ability against harmful organisms has 

increased its application in managing a wide range of 

plant diseases, including those caused by fungi, 

nematodes, viruses, and bacteria. The effectiveness of 

Trichoderma as a bio-agent for various seed- and soil-

borne diseases underscores its potential in achieving 
sustainable agriculture goals. Despite its advantages, 

Trichoderma is not as widely used as chemical fertilizers 

and pesticides. Several obstacles hinder its widespread 

acceptance, including its slower action compared to 

chemical alternatives, which limits its immediate 

effectiveness. Trichoderma does not completely eradicate 

plant pathogens, leading to residual disease presence and 

its performance can be inconsistent under different 

environmental conditions, affecting its reliability. 

Additionally, Trichoderma often struggles to establish 

itself effectively in the rhizosphere and the diverse and 

unpredictable field conditions pose challenges to its 
consistent application and efficacy. To address these 

challenges, future efforts should focus on improving the 

field performance of current biocontrol agents. 

Coordinated application strategies should be developed. 

Investment in advanced formulations that enhance the 

stability and activity of Trichoderma strains is necessary. 

Strengthening the inherent biocontrol properties of 

Trichoderma through biotechnological innovations is also 

crucial. A deeper understanding of the Trichoderma 

genome can facilitate the production of genetically 

modified strains with superior commercial and field 

potential, creating genetically enhanced strains that 
exhibit improved biocontrol properties and better 

adaptability to varying environmental conditions. The 

implementation of comprehensive policy frameworks at 

national and international levels is critical for promoting 

the use of Trichoderma in agriculture. Supporting 

initiatives that encourage the large-scale production and 

commercialization of Trichoderma-based products and 

developing policies that facilitate their efficient 

distribution and utilization among farmers are essential. 

Such measures are anticipated to support the sustainable 

management of plant diseases and significantly impact 

agricultural practices, promoting a shift towards more 
eco-friendly and sustainable farming systems. 
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