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ABSTRACT

Curvature invariants are scalar quantities contdufrom tensors that represent curvature. Ondefiost
basic polynomial curvature invariants in generdatigity is the Kretschmann scalar. This study iz a
investigation of this curvature invariant and tbamection of geometry to entropy and informatiomnliéferent
metrics and black holes. The scalar gives the tur@af the spacetime as a function of the radghdce r in
the vicinity as well as inside of the black holee \erive the Kretschmann Scalar (KS) first forftn fiorce
metric that incorporates a Yukawa correction, tf@ma Yukawa type of Schwarzschild black hole, &or
Reissner-Nordstrom black hole and finally an irééstar metric. Then we investigate the relatiod derive
the curvature’s dependence on the entropy S andbemaf information N. Finally we discuss the seftinn
which the entropy’s full range of positive and niagavalues would have a meaningful interpretatidhe
Kretschmann scalar helps us understand the bldelstappearance as a “whole entity”. It can be iegph
solar mass size black holes, neutron stars or si@sive black holes at the center of various gadaxi

Keywords. Kretschmann Scalar (KS), Schwarzschild Black HReissner-Nordstrom (RN)

1. INTRODUCTION where, R,5,5 is the Riemann tensor. In principle the
derivation of the KS is simple, but in practice to

When we study any space time, it is important actually derive it requires a very long algebraic
above other things to know whether the spacetime iscomputation, which can very much be simplified with
regular or not. By regular spacetime we simply meantoday’s software that perform algebraic and teradori
that the space time must have regular curvaturecalculations. In order to calculate the above scak
invariants are finite at all space time pointscontain  first need to calculate the Christoffel symbolstbé
curvature singularities at which at least one suchsecond kind according to the Equation 2:
singularity is infinite. In many cases one of thesn

useful ways to check that is by checking for the 3 s s
finiteness of the Kretschmann Scalar (from then on |;y=1 6“(9»6+ 95 ng )
KS) which sometimes is also called Riemann tensor 2 o X ox

squared, in other words Equation 1:

oo Once the Christoffel symbols are calculated we then
K= RypR 1) calculate the Riemann tensor to be Equation 3:
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fields @ Actually, more complicated invariants like
R“R,y andRYR . and C**C 5. In the weak field
limit theories described by Equation 6 result téeptials

For example in a sphere there are only two nonzeroof the form (Capozziellet al., 2010) Equation 7:

Riemann tensor components i.e.R;,=sin’g and
alsor,,, =sin*d,which  exactly  characterize the

curvature of the sphere. We usually think of the
curvature as the Ricci scalar, which can be obthine
by contraction of the Riemann tensor, fiR},=R

and therR=R? . In the case of a sphere the takes the form

(Henry, 2000) Equation 4:

4

Ks = RaﬁyaRaﬂw = 2 4)

Because it is a sum of squares of tensor compgnents

this is a quadratic invariant. In the case of blholes the
calculation of the scalar is required if somebodynis to
derive and investigate the curvature of a blacle.hdhe
need for calculation of the KS emanates from thetfat in
vacuum the field equations of general relativityzero
Gaussian curvature at and in the black hole, thuiisggno
information about curvature of the spacetime and theK
scalar need to be computed. In the case of Scheteldzs
black holes the KS ®’inverno, 1992 Equation 5:

_48G°M?

K
bh cor

)

In this contribution we examine the KS of a Yukawa
type modified Schwarzschild black holes as it isegn
(HaranasandGkigkitzis, 2013b) and compare this to the
Schwarzschild scalar. Furthermore, in an effort to
investigate the relation between entropy, infororatnd
geometry we write the Yukawa black hole scalar as
function of entropy and information numksr

2. THE YUKAWA POTENTIAL

Following (Capozzielloet al., 2010; Haranasand
Gkigkitzis, 2013b) we say that theories derivednfro
the action:

A= 8 1(RORORORA)-Sa"0,, 4L, o' (@

Result to Yukawa corrections to the gravitational
potential wheref(R) is an analytic function of Ricci
scalar,g is the determinant of the metmig, andLmis a
fluid-matter Lagrangean and whefas an unspecified
function of curvature invariants R arddR and of scalar

////4 Science Publications 104

n

{1+ D> aet

k=1

V(r)<_CM
r

(@)

|

where, G,, is the value of the gravitational constant as
measured at infinityiis the interaction length of tHé'
component of non-Newtonian corrections ang
amplitude of is term is normalized to the standard.

Newtonian term. If somebody considers the firstter
in the series of Equation 9, we obtain the follagvin
potential Equation 8:

[1+ale”11
The second term is a Yukawa type of correction to
the Newtonian potential and its effect can be
parameterized by,andA; which for simplicity we will
call « and A. For large distances, i.er>>1 the

exponential term vanishes and the gravitationaktaort
is simplyG.,. If r<<41 the exponential becomes unity.

)

v(r)=-%

(8)

3. THEMETRIC AND RICCI TENSOR
AND THE KRETSCHMANN SCALAR

Writing the metric of a spherically symmetric star
the following way:

ds? = %Mt 2 - g 2- %1 gQ 2

©)

awhere,ﬂ, v, ¢ are in general functions of radial

distancer and timet and d* = dé+sin&d¢. For a
static metric in Equation 9 the Ricci tensor isgtinal
and therefore we obtain the following nonzero
components Equation 10 to 13:

R =™ (28 +v+ 28247~ 4 2% +V))

(10)
- (u'+ (28 + V)
R=e# (\'/‘+\'/(2$—/J+\'/)) 1)
_e_zv(2{'2+[/2—\/(25'+/1'))
RE=Ri=e™ e (frd(2d-pv)) (12)
—e?(&+& (28 + 4/ -V))
Pl
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Ru=2(¢é+&(é-v)-pé)

Similarly, we find that Equation 15 to 17:

e d (A,
K, =- oi:e(# )a[ﬁeﬂ j

() d€ du

K, =R = Ri=e ™ L

-veg) d [ o dE
K, =-R:=-Rg=¢ {)a[e‘( aj

2
K, =-Rg=e)+ e-w(%J

And therefore the KS becomes:

K :4(K1)2+8(K2)2+8(Ks)2+ 4(K4)2

(13)

(14)

(15)

(16)

7

(18)

Next in our effort to investigate KS singularitie$

various metric let us now proceed with a fifth #®rc
metric that incorporates a Yukawa correction asgsit
given by (Spallicci, 1991) curved only in the time

where, Equation 23:
: [1252”[1 ae”ﬂ (23)

For a black hole of massl the KS possesses an
essential singularity at the valuerof ry whereT = 0
given by Equation 24:

2GM [2G|v| a X ] (24)

r, = + AW e’
Poo¢e? c?

where, W is the Lambert function of the indicated
argument. Next, following (Haranaand Gkigkitzis,
2013a) we write the metric of a Yukawa type of
Schwarzschild black hole that is curved in alonghbo
the time and radial coordinate, according to the
equation Equation 25:

_2GM

cr

ds® = cz[l (1+ ae" )} dt?
2GM * (29)
—[l— (l+ ae'””)} dr? -r3dQ?

c?r

coordinate and used for measurements in the solar

system experiments namely:

2GM
T2

ds? :02[1
c’r

(1+cre‘”‘)}dt2—dr2—r2dQ2

And therefore Equation 19 to 21:

v(r)=0

&(r)=r

u(r)[r =§'nﬂl— 2??” [“’Jm

(18)

(19)

(20)

(21)

Omitting ordersO(c™®), O(c™®) ande™®* ande™" the
final expression for the KS becomes Equation 22:

1 - ror?
—+ae | l+—+——
48G*M 2| 2 A3

c'roT? , 21 52
+ge 4 E+7+7+

r
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where, d® = d&+sin’d¢@ and upon comparing
Equation 9 and 14 we obtain that Equation 26 to 28:

v(r)=1n [[1— e [1+ ae_;ﬂ_l] (26)

&(r)=r (27)

) o -2 e | )

Therefore using Equation 18 the final expressian fo
the KS becomes:

= i, =8
l+ge’ (1+i; +;j (29)
+a2e_2; [1+6r r—z r—3 r ]
121 A% 3% 1Al
105 PI
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The KS equation above Equation 28 does not Furthermore, Equation 33 approaches the KS of the
possess an essential singularity. This could betdue Schwarzschild KS if the two RHS terms become zero f
the fact that the metric elemends, cancels with the the values of r given by:
corresponding,, . As a check we see that wherr 0

we immediately obtain the KS of a Schwarzschild | _,. /|5 R’ (35)
metric as it is given in (Henry, 2000). T em
Next, we use the non-rotating but electrically gear

source vacuum solution as it is given by the Reissn 4. KRETSCHMANN SCALARANDIT

Nordstrom solution (Misner and Wheeler, 1973) RELATION TO ENTROPY AND
2GM GQ? NUMBER INFORMATION
dszzc{l— —+ - 2} 2
cTr  ArE,Cr .. .
3 (30) In general relativity there exist a set of curvatur
- 2GM GQ? dar? — 240> invariants that they are scalars. They can be forfrem
¢ AmE,cr? the Riemann, Ricci and Weyl tensors respectivetl/thay
describe various possible operations such thatarzmnt
The final expression for the KS becomes: differentiation, contraction. We can obtain various
invariants that they are formed from these cureatensors
K =4862M2( + xQ° + * ] (31) that play an important role in the classificatiohspace-
A crM 48t M 2 times. Invariants useful in distinguishing Riemami

. ) manifolds or manifolds that they have a positivd arell
As a check we see that whéh= 0 we immediately  gefined metric tensor. In order to investigate true
obtain the KS of a Schwarzschild metric as it igegiin singularities one must look at quantities that are

&Hoigg?rsgoogbg\'g'Iaég’a;rt]i%rfszgqgit'e%n gg:hsiaseers's ariwndepen.dent of the cho.icg of coordinates. Oneasfelis the
essential singularity but only thre= 0 one. Moreover, K,S Wh',Ch’ at .the ongin on]y or = 0 possesses a
let us consider the internal star metric solutiatt  Singularity that is a physical singularity which een also
reads (Stephani, 1990) Equation 32: call gravitational singularity. Atr = O the curvature
becomes infinite indicating the presence of a dargy.
3 oM 1 GMr2 2 At this point the metric and space-time itselfn@slonger
ds” =C{2\{1‘ e o\ TR } well-defined. For a long time it was thought thatls a
(32) solution was non-physical. However, a greater
dtz{l— ZGMrTldrz—rdez understanding of general relativity led to the ixzdion
2R® that such singularities were a generic featurdeftheory
and not just an exotic special case. Such solutoamsiow

The final expression for the KS becomes: believed to exist as called black holes.
This contribution is an effort to connect geometyy
- _A°M? 485°M? information and an attempt to investigate the
"R . 2GMr 2 o2 ) consequences of essential KS entropy and informatio
CRIWI- e "} R singularities that may result from the eliminatioimass
(33) M that enters the metric. Sinee= 3.04x10° andr</ =
_ 96G°M * * 4.94x16° m (Haranas and Gkigkitzis, 2011) and
5 g /
2GMr? 2GMr 2 con5|der|rjg al sqlgr mass black hole Equationh29 t
CSRQ[\/l— ~ —3\/1- o~ ] exponential quantitiese™/1 and e®"/1 are both
approximately equal Equation 22 simplifies to:
The KS equation i.e., Equation 33 possesses an ;
essential singularity at the following values of r: - =+ a(1+—j
48G°M
o 2GM 2 1. r (36)
9GM - 4c’R 4619 _ +02| Z+
e =2 = (34) cf [l rc (1+a)} a [2 /1)
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Therefore we find that the KS has an essential

singularity that is given by the equation:

2GM
« 2o+ a) =R, (1+a) (37)
where, Rg, is the gravitational radius of the

Schwarzschild black hole. At this point we see tinéd

particular metric does posses an event horizon and

6

kKS

ks (1+a)’
aG*m;

(42)

(Ses)

And therefore the number of informatidsh can be
written as a function of the KS in the following ya

N(Kys) O

c¢'(1+a)’ [6

— (43)
aG’m;In 2\ ks

therefore the entropy cannot be calculated on the

horizon. However, the existence of a singular bawmpd
is apparent: theKretcmann horizon” given by Equation
37. To proceed let us assign a definition of entrdpe

KS entropy, similar to that calculated to (Harareasd

Gkigkitzis, 2011), which reads as follows:

(ke ), _4n(1+a)’ kG
ooyt
2 (38)
M? :4n(1+a)2k5[ M ]
mp

where, Asis the surface area defined by the Equation
37. This definition suggests that the KS horizonais
depository of information (or infinite informationNext

we obtain that Equation 40:

- m, SKS 39
2(1+a)\ ik, (39)
And:
Gm, S
=——F 40
fes. = 2 (1+a)\ ik, (40)
Substituting Equation 38 in Equation 39 in

Equation 36 we express KS as a function of the
entropyScsand we find that:

12c%, 1. Gm S
K - B = P ~Ks
KS(SKS) a*G'mS {2 e (1+a)\ K }
(41)
+a?| 1+ ———— CMm,__ Se
CA(L+a)\ kg

For 1 solar mass black hole the most significant
contribution comes from the coefficient of the’2é8m and
therefore the KS entropy can be written as Equditin

////4 Science Publications 107

Similarly, taking into account the same assumptions
as in Equation 35 we obtain KS of a fully curved
Yukawa type of metric is given by Equation 28 can b
approximated in the following way Equation 44:

25 2
Ky = Ken + Keor D4&32A
cr

{1+a(1+16r)+a2(1+16vﬂ
124 12}
Next, u sing expressions for the mass and the
gravitational radius for a Yukawa black hole as a
functions of entropy for a solar mass black hoke,ita
given in (Haranasnd Gkigkitzis, 2013b) we are trying

to express the singularity in the gravitationalivadas a
singularity in essence in entropy S Equation 45 &@d

(44)

M(S) % m (45)
r, = Zfiv' (1+a)

= Blara) (1;12)3 (46)
= ip(1+a) m

Equation 41 has only one singularityrat 0 and
there is no other essential singularity. Using Eopue
41 and taking into account the same assumptioms as
Equation 35 we obtain that the KS as a function of
entropyS on the horizon of such a black hole up to the
O(c®) the most significant contribution comes from
the coefficient of thel/S? term and therefore the KS
can be written as Equation 47:

2.~21,2
127°G*mk; (1—a—a3)

K B o
c/p(1+a) S

(47)

Yuk

PI
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Which tends to zero as the entropy approachesitynfin 1 \/133,15 Gk,Q'  8Q7

Solving for the entropy S we obtain an expressibthe " T8\ 7k TEXHS  TE
B 0 0

entropy as a function of the scaligy, to be Equation 48: (53)

4 2
. 12J%(GQz+chGSeo+kaw_GQ]
27nGm k, (1-a) | 3(1+a+a?) 2ec?\ ke  16che,S 2,
e (48)
s (1+a) K

yuk And therefore substituting fakgy andM we write the
KS of the Reissner-Nordstrom (RN) metric as a fiomct

Next using (HaranaandGkigkitzis, 2013a) we write of entropy in the following way Equation 54 and 55:

the entropy to beS = Nkgln2, we write the KS as a
function of entropy and number of information N Kyg=
according to the equations:

7G 2Q4 N 3;) 2
2P el @ %,

16chG’S . kIGRQ* 612
V2 ke Chedg TS | et (54)
2nGmp (l—a) 3(1+a+a2) (49) B o8 0
= 2 4 2
In2c?/3 (1+ a)3 Ky +% 16(30h5+kBL9_8k8ﬂ
47k c"P Ch&,S &
N = 0 only if alpha imaginary. Both Equation 43 and Where:
44 can exhibit a singularity if and only if the qbing
constant becomes negative i.e.,= -1. A negativea . KQ* 8k,Q%S
would introduce a repulsive component in the Yukawa 16chGS” + chel & 1
. . e . q) - +
correction something that it is known as a fifthcta 82 k.S 26,7 (55)

Next we consider the Reissner-Nordstrom (RN)
metric the KS does not possess a singularity besid &G 2. & » kiQ* 8k,Q%S
= 0 case. The event horizon RN metric has the vidgtig T Q +@ 16cnS"+ chel T g
solutions Equation 50:

0

The KS of the Reissner-Nordstrom (RN) metric

G 2+ 47E.GM 2 possesses a singularity wheén= 0, for the following values
M =Gl\2/l 1 2\/ (Q +ama) (50)  of entropy out of which the first two are real nierd
e 25¢C T Equation 56 to 59:
And therefore the corresponding entropy becomes kBQ2(2+Q/€0) 56
Equation 51: _W (56)
c’k 27k ,GM 2
St =| T [ An =T kBQZ(Z—Q/EO)
AGHh ch S=——— S0s-ve (57)
5 > (51) 4che, (2+cz,)
9, keM | 7Ge, (Q* +4£,GM ?)
a0 o kQ(2+els) (58)
Solving for the mass M in terms of the entropy we 4Ch‘€0(2 _C£0)
obtain Equation 52:
S = kBQZ(Zi _C\/g) (59)
vl 188, kQ' &’ (52) * dong, (2 +cs, )
8\ nGk, rEXchGS 1E,G

And therefore the values of the number of
Similarly the event horizon as a function of enyrop information N at which Equation 49 is singular are
becomes Equation 53: Equation 60 to 63:

////4 Science Publications 108 o
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oferefe)

Lo 4che, (2—c50) In2 (60)

__Q(zele) -
4ch£0(2+cgo)ln2

- _Slavela) 62
4che, (2 —cgo) In2

(2 -0z )

+” 4ch£0(2' +c.£0)ln2

Finally for the internal metric solution of a sthere
is a metric singularity at=r,when Equation 64:

R3

r, =*c
2GM

(64)

And therefore the entropy becomes Equation 65:

_( 3k, _ _mk| R
SKS_( ]A<s_ R3_ ﬁ*i [Rgr&h}

4Gh
where,Ry«n is the Schwarzschild gravitational radius.
Therefore solving for the madd from Equation 66
we obtain that:

__ 7k, [ ¢°R°
03\ GS

7K, C®
2G*Mh

(65)

(66)

The KS of the internal metric solution has an esaen
entropy singularity that is given from Equation 68:

_ 7tkeC’
ks ~ 8GH

(9rR?-r?) (68)

Or an equivalent number of information singularity
that takes the value Equation 69:
7703
N =
KS« 8GhriIn2

(9rR?-1?) (69)

To compare we write the KS of the Schwarzschild
metric on the horizon an a function of entropy and
information to be Equation 70:

2
/

_ lZ[ZJ S
kg | 1

5. DISCUSSION

<, = 120

= 70
kg1 (70)

The Schwarzschild solution was the first physically
significant solution of the field equations of geale
relativity. It showed how space time is curved aau
spherically symmetric distribution of matter. Th& Kor
a Schwarzschild black hole is inversely proportlaioa
the distance. In Equation 18 a formula for the ISS i
given for a general spherically symmetric metricickh
we apply to a fifth force metric that incorporatas
Yukawa correction and notice that KS possesses an
essential singularity at the horizon. Then we wthe
metric of a Yukawa type of Schwarzschild black hole
that is curved in along both the time and radial
coordinate and we notice in Equation 29 that the
singularity disappears. This is also the caseHerrton-
rotating but electrically charged source vacuunutsmh
as it is given by the Reissner-Nordstrom solution i

And thus Equation 33 of the corresponding KS can begquation 29-31. In considering the internal starrive

written in terms of the entropy S as follows Equat7:

1277k
int — Gzhzsz
6,2
+ 12m%c%k? 2 67)
G2?S? Jl—M _ 3 eCH®
GhS GhS
B 127°c%kSr 2
G3h3s? \/1_77kBC3rz —3/1- nkBC3R2
GnS GnS
////4 Science Publications 109

solution we see again the occurrence of an esentia
singularity in Equation 34. The introduction of the
concept of entropy leads to the definition of “KS
horizon”, beyond the distinction between gravitasib
singularities and essential geometric singularitielsis
allows us to define and investigate singularities i
essence in entropy S. The equations for the entsymh
as 42, 48, 50, 58 and 59 as well as the equat@mnthé
corresponding information may result in negatived an
complex values for the entropy, which makes it ssagy
to seek an appropriate framework for the interpigteof
these results in an intersection between or cortibmaf
general relativity and quantum mechanics.
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The scalar gives the curvature of the spacetimee as information possession of a system in the totatesta

function of the radial distanaein the vicinity as well
as inside of the black hole. Furthermore,

(Horodeckiet al., 2005). It is possible for a black hole to

the correlate with its environment in ways such as tuan
Kretschmann scalar helps us understand the blaclentanglement

using procedures such as quantum

hole’s appearance as a whole entity from a geometri teleportation where qubits (the basic units of duim

as physical point of view. It can be applied inasol

information) can be transmitted exactly (in prirejp

mass size black holes, neutron stars or supernessivfrom one location to another, without the qubitsnbe

black holes at the center of various galaxies.
Finding a setting in which the entropy’s full range

transmitted through the intervening space. Theréfor
can be correlated to a reference system that regula

values would have a meaningful interpretation is anmaximally entangled states of a system which can be

essential step in interpreting our results on ¢mtro
Negative entropy appears as an interesting featfire
higher derivative gravity (Cveticet al., 2002)
(Schwarzschild-Anti-deSitter and Schwarzschild-tteSi

used as a teleportation protocol to transmit quantu
states from a source to a receiver.

Landauer's principle states that the erasure o dat
stored in a system has an inherent work cost aréftire

gravity black holes) and has been suggested thst th dissipates heat. However, this consideration assuthes

appearance of negative entropy may indicate a gpe t
instability where a transition between SdS (SAdB&El
holes with negative entropy to SAdS (SdS) blackesol
with positive entropy would occur and where thesizal
thermodynamics would not apply any more. It wa® als

the information about the system to be erasedaissical
and does not extend to the general case wheresanveb
may have quantum information about the system to be
erased, for instance by means of a quantum memory
entangled with the system. The study cost of esagur

suggested that such a new type phase transition igletermined by the entropy of the system, conditianethe

presumably related with the known fact that strengrgy
condition in higher derivative gravity maybe viadt

guantum information an observer has about it. Theeran
observer knows about the system, the less it tostsise it.

(Cveticet al., 2002). On the other hand, entropy can be Entropies can become negative in the quantum e

negative and erasing bit from a system can restriet
gain of work, leading to the result of the effebatt a

an observer who is strongly correlated with a systeay
gain work while erasing it, thereby cooling the iemvment

guantum computer may cool itself by erasing bits of (Del Rioet al., 2011).

information (Del Rioet al., 2011). It will be interesting if
such negative entropy idea can apply to black hdlbs

The notion of complex-valued as well as negative
information entropy remains to be given some plajsic

can change Hawking radiation-maybe under somesense interpretation through possibly an interaatamge

condition, the black hole can also be cooling sys{eot
only radiating) or other unknown as of now effectay
be happen. Modeling our universe as just a big caenp
deleting information in a black hole may occur tigh
accretion matter to black hole and the black haesd
not radiate but cools the universe. This seemsetanb

consideration. We can only conjecture that the derp
entropy may be the result of a certain backgroued f
energy and/or scale invariance. From a quantum
mechanics point of view, this might indicate thegance

of a non Hermitian Hamiltonian (Rotundo and Ausloos
2013). Certain observations indicate this directign

accordance with another approach of suggesting thahttempt to a dynamical interpretation of a cladsica

Hawking radiation, via quantum tunneling, carriefr@y
out of the black hole, a process that represenét gain of
information drawn out from the black hole (Zhagtgal.,

2011). So, Hawking radiation carries not only epyrdout
also information, out of the black hole.

complex free energy is found in (Zwerger, 1985) rghe
the author pointed out that the problem is to deiee a
characteristic "relaxation” time for some process i
which a dynamical equation (Langevin or Fokker-
Planck) is connected to some Hamiltonian or some

Negative values for the entropy point towards a corresponding transfer matrix. A probability cutrean

guantum entropy which can be understood operational
as quantum channel capacity (Horodestlkal., 2005). In

be written, in fact, in terms of some unstable mbches
an equilibrium factor which is the imaginary pafttbe

Fhe Ianguage pf_ co_mmunication theory,_ the amount offree energy. The imaginary part of the free endimy
information originating from a source is the memory largest eigenvalues) give some information aboet th

required to faithfully represent its output andstamount
is given by its entropy. Negative entropy has asptaf
interpretation in terms of how much quantum

"nucleation stage” of the dynamics, i.e., an ihidacay
rate out of a metastable state of a system afteidden
change in an effective field (Zwerger, 1985). This

communication is needed to gain complete quantummetastable state in our may correspond to a phlysica

////4 Science Publications
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