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ABSTRACT 

Curvature invariants are scalar quantities constructed from tensors that represent curvature. One of the most 
basic polynomial curvature invariants in general relativity is the Kretschmann scalar. This study is an 
investigation of this curvature invariant and the connection of geometry to entropy and information of different 
metrics and black holes. The scalar gives the curvature of the spacetime as a function of the radial distance r in 
the vicinity as well as inside of the black hole. We derive the Kretschmann Scalar (KS) first for a fifth force 
metric that incorporates a Yukawa correction, then for a Yukawa type of Schwarzschild black hole, for a 
Reissner-Nordstrom black hole and finally an internal star metric. Then we investigate the relation and derive 
the curvature’s dependence on the entropy S and number of information N. Finally we discuss the settings in 
which the entropy’s full range of positive and negative values would have a meaningful interpretation. The 
Kretschmann scalar helps us understand the black hole’s appearance as a “whole entity”. It can be applied in 
solar mass size black holes, neutron stars or supermassive black holes at the center of various galaxies.  

 
Keywords: Kretschmann Scalar (KS), Schwarzschild Black Hole, Reissner-Nordstrom (RN) 

1. INTRODUCTION 

 When we study any space time, it is important 
above other things to know whether the spacetime is 
regular or not. By regular spacetime we simply mean 
that the space time must have regular curvature 
invariants are finite at all space time points, or contain 
curvature singularities at which at least one such 
singularity is infinite. In many cases one of the most 
useful ways to check that is by checking for the 
finiteness of the Kretschmann Scalar (from then on 
KS) which sometimes is also called Riemann tensor 
squared, in other words Equation 1: 
 
K R Rαβγδ

αβγδ=  (1) 

where, Rαβγδ is the Riemann tensor. In principle the 
derivation of the KS is simple, but in practice to 
actually derive it requires a very long algebraic 
computation, which can very much be simplified with 
today’s software that perform algebraic and tensorial 
calculations. In order to calculate the above scalar we 
first need to calculate the Christoffel symbols of the 
second kind according to the Equation 2: 
 

1

2

g g g
I g

x x x
γδ βδ γβα δα

βγ β γ δ

 ∂ ∂ ∂
= + +  ∂ ∂ ∂ 

 (2) 

 
Once the Christoffel symbols are calculated we then 

calculate the Riemann tensor to be Equation 3: 
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 R
x x

α α
βδ βγα µ α µ α

βγδ βδ µγ βγ µδγ δ

∂Γ ∂Γ
= − + Γ Γ − Γ Γ

∂ ∂
 (3) 

 
For example in a sphere there are only two nonzero 

Riemann tensor components i.e., 
1 2
212 sinR θ= and 

also 1 2
221 sin ,R θ= which exactly characterize the 

curvature of the sphere. We usually think of the 
curvature as the Ricci scalar, which can be obtained 
by contraction of the Riemann tensor, first R Rα

βδ βαδ=  

and thenR Rα
α= . In the case of a sphere the takes the form 

(Henry, 2000) Equation 4: 
 

4

4
sK R R

a
αβγδ

αβγδ= =  (4) 

 
Because it is a sum of squares of tensor components, 

this is a quadratic invariant. In the case of black holes the 
calculation of the scalar is required if somebody wants to 
derive and investigate the curvature of a black hole. The 
need for calculation of the KS emanates from the fact that in 
vacuum the field equations of general relativity a zero 
Gaussian curvature at and in the black hole, thus giving no 
information about curvature of the spacetime and thus the K 
scalar need to be computed. In the case of Schwarzschild 
black holes the KS is (D’inverno, 1992) Equation 5: 
 

2 2

4 6

48
bh

G M
K

c r
=  (5) 

 
In this contribution we examine the KS of a Yukawa 

type modified Schwarzschild black holes as it is give in 
(Haranas and Gkigkitzis, 2013b) and compare this to the 
Schwarzschild scalar. Furthermore, in an effort to 
investigate the relation between entropy, information and 
geometry we write the Yukawa black hole scalar as a 
function of entropy and information number N.  

2. THE YUKAWA POTENTIAL 

Following (Capozziello et al., 2010; Haranas and 
Gkigkitzis, 2013b) we say that theories derived from 
the action: 
 

( )2 4
; ;, , , ,

2
k v

v v mA g f R R R R g L d xµ
µ

εφ φ φ = − ∇ ∇ ∇ − + 
 

∫  (6) 

 
Result to Yukawa corrections to the gravitational 

potential where f(R) is an analytic function of Ricci 
scalar, g is the determinant of the metric gµν and Lm is a 
fluid-matter Lagrangean and where f is an unspecified 
function of curvature invariants R and ∇R and of scalar 

fields φ. Actually, more complicated invariants like 
RµνRµν and RµναβRµναβ and CµναβCµναβ. In the weak field 
limit theories described by Equation 6 result to potentials 
of the form (Capozziello et al., 2010) Equation 7: 
 

 ( )
1

1 k

r
n

k
k

G M
V r e

r
λα∞

=

 
 = − +
  
∑  (7) 

 
where, G∞ is the value of the gravitational constant as 
measured at infinity, λk is the interaction length of the kth 
component of non-Newtonian corrections and αk 
amplitude of is term is normalized to the standard.  

Newtonian term. If somebody considers the first term 
in the series of Equation 9, we obtain the following 
potential Equation 8: 
 

( ) 1
11

r
G M

V r e
r

λα∞
 
 = − +
  

 (8) 

 
The second term is a Yukawa type of correction to 

the Newtonian potential and its effect can be 
parameterized by a1 and λ1 which for simplicity we will 
call α and λ. For large distances, i.e., r>>λ the 
exponential term vanishes and the gravitational constant 
is simply G∞. If r<<λ the exponential becomes unity.  

3. THE METRIC AND RICCI TENSOR 
AND THE KRETSCHMANN SCALAR 

Writing the metric of a spherically symmetric star in 
the following way: 
 

( ) ( ) ( ), 2 , 2 ,2 2 2 2 2 2r t v r t r tds c e dt e dr e dµ ξ= − − Ω  (9) 
 
where, µ, ν, ξ are in general functions of radial 
distance r and time t and dΩ2 = dθ2+sin2θdφ2. For a 
static metric in Equation 9 the Ricci tensor is diagonal 
and therefore we obtain the following nonzero 
components Equation 10 to 13:  
 

( )( )
( )( )

0 2 2 2
0

2

2 2 2

2v

R e v v v

e v

µ ξ ξ µ ξ

µ µ ξ µ

−

−

= + + + − +

′′ ′ ′ ′ ′− + +

&& & &&& & & &

 (10) 

 

( )( )
( )( )

1 2
1

2 2 2

2

2 2v

R e v v v

e v

µ ξ µ

ξ µ ξ µ

−

−

= + − +

′ ′ ′ ′ ′− + − +

&&& & & &

 (11) 

 

( )( )
( )( )

2 3 2 2
2 3

2

2

2v

R R e e v

e v

ξ µ ξ ξ ξ µ

ξ ξ ξ µ

− −

−

= = + + − +

′′ ′ ′ ′ ′− + + −

&& & & & &

 (12) 
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( )( )01 2R vξ ξ ξ µ ξ′ ′ ′= + − −& & &&  (13) 

 
Similarly, we find that Equation 15 to 17: 

 
( )01

1 01
v vd d

K R e e
dr dr

µ µµ− + − = − =  
 

 (14) 

 
( )202 03

2 02 03
v d d

K R R e
dr dr

ξ µ−= − = − =  (15) 

 
( )12 13

2 12 13
v vd d

K R R e e
dr dr

ξ ξ ξ− + − = − = − =  
 

 (16) 

 

( )
2

223 (2 )
4 23

v d
K R e e

dr
ξ ξ− −  = − = +  

 
 (17) 

 
And therefore the KS becomes: 

 

( ) ( ) ( ) ( )2 2 2 2

1 2 3 44 8 8 4K K K K K= + + +  (18) 

 
Next in our effort to investigate KS singularities of 

various metric let us now proceed with a fifth force 
metric that incorporates a Yukawa correction as it is 
given by (Spallicci, 1991) curved only in the time 
coordinate and used for measurements in the solar 
system experiments namely: 
 

( )2 2 / 2 2 2 2
2

2
1 1 rGM

ds c e dt dr r d
c r

λα − = − + − − Ω 
 

 (18) 

 
And therefore Equation 19 to 21: 

 
( ) 0v r =  (19) 

 
( )r rξ =  (20) 

 

( ) 2

1 2
ln 1 1

2

rGM
r r e

c r
λµ α

−    
 = − +   
      

 (21) 

 
Omitting orders O(c−8), O(c−6) and e−3r/λ and e−4r/λ the 

final expression for the KS becomes Equation 22: 
 

2

22 2

4 6 2 2 2 3 4
2

2 3 4

1
1

2 348

1 5

2 6 3 12

r

r

r r
e

G M
K

c r T r r r r
e

λ

λ

α
λ λ

α
λ λ λ λ

−

−

  
+ + +  

  ≅    + + + + + 
   

 (22) 

where, Equation 23: 
 

2

2
1 1

rGM
T e

c r
λα

−  
= − +  
   

 (23) 

 
For a black hole of mass M the KS possesses an 

essential singularity at the value of r = rH where T = 0 
given by Equation 24: 
 

2

2

2 2

2 2
GM

c
H

GM GM
r W e

c c
λαλ

λ
 

= +   
 

 (24) 

 
where, W is the Lambert function of the indicated 
argument. Next, following (Haranas and Gkigkitzis, 
2013a) we write the metric of a Yukawa type of 
Schwarzschild black hole that is curved in along both 
the time and radial coordinate, according to the 
equation Equation 25: 
 

( )

( )

2 2 / 2
2

1
/ 2 2 2

2

2
1 1

2
1 1

r

r

GM
ds c e dt

c r

GM
e dr r d

c r

λ

λ

α

α

−

−
−

 = − + 
 

 − − + − Ω 
 

 (25) 

 
where, dΩ2 = dθ2+sin2θdφ2 and upon comparing 
Equation 9 and 14 we obtain that Equation 26 to 28: 
 

( )
1

2

1 2
ln 1 1

2

rGM
v r e

c r
λα

−
−   

 = − +  
     

 (26) 

 
( )r rξ =  (27) 

 

( ) 2

1 2
ln 1 1

2

rGM
r e

c r
λµ α

−   
= − +   

    
 (28) 

 
Therefore using Equation 18 the final expression for 

the KS becomes: 
 

2 2

4 6

2

2

2 2 3 4
2

2 3 4

48

16
1 1

12

16
1

12 3 12

Yuk sch cor

r

r

G M
K K K

c r

r r
e

r r r r
e

λ

λ

α
λ λ

α
λ λ λ λ

−

−

= + =

  
+ + +  

  
   + + + + + 
   

 (29) 
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The KS equation above Equation 28 does not 
possess an essential singularity. This could be due to 
the fact that the metric elements gµν cancels with the 
corresponding 1gµν

− . As a check we see that when α = 0 

we immediately obtain the KS of a Schwarzschild 
metric as it is given in (Henry, 2000).  

Next, we use the non-rotating but electrically charged 
source vacuum solution as it is given by the Reissner-
Nordstrom solution (Misner and Wheeler, 1973): 
 

 

2
2 2 2

2 4 2
0

12
2 2 2

2 4 2
0

2
1

4

2
1

4

GM GQ
ds c dt

c r c r

GM GQ
dr r d

c r c r

πε

πε

−

 
= − + 

 

 
− − + − Ω 
 

 (30) 

 
The final expression for the KS becomes: 

 
2 2 2 4

4 6 2 4 2 2

48 2 7
1

48RN

G M Q Q
K

c r c rM c r M

 
= + + 

 
 (31) 

 
As a check we see that when Q = 0 we immediately 

obtain the KS of a Schwarzschild metric as it is given in 
(Henry, 2000). Similarly, the KS equation of the Reissner-
Nordstrom above Equation 29 does not possess an 
essential singularity but only the r = 0 one. Moreover, 
let us consider the internal star metric solution that 
reads (Stephani, 1990) Equation 32: 
 

2
2

2 2
2 2

12
2 2 2 2

2 3

3 2 1 2
1 1

2 2

2
1

GM GMr
ds c

Rc Rc

GMr
dt dr r d

c R

−

 
= − − − 

  

 
− − − Ω 
 

 (32) 

 
The final expression for the KS becomes: 

 
2 2 2 2

int 24 6
2 2

4 6
2 2

3 3 2

2
2 2

6 9
2 2

48 48

2 2
1 3 1

96

2 2
1 3 1

G M G M
K

c R GMr GMr
c R

Rc Rc

G M r

GMr GMr
c R

Rc Rc

= +
 

− − − 
 
 

−
 

− − − 
 
 

 (33) 

 
The KS equation i.e., Equation 33 possesses an 

essential singularity at the following values of r: 
 

2

int

9 4
K

GM c R
r R

GM

−= ±  (34) 

Furthermore, Equation 33 approaches the KS of the 
Schwarzschild KS if the two RHS terms become zero for 
the values of r given by: 
 

3

int 2K

R
r c

GM
= ±  (35) 

 
4. KRETSCHMANN SCALAR AND IT 

RELATION TO ENTROPY AND 
NUMBER INFORMATION 

In general relativity there exist a set of curvature 
invariants that they are scalars. They can be formed from 
the Riemann, Ricci and Weyl tensors respectively and they 
describe various possible operations such that, covariant 
differentiation, contraction. We can obtain various 
invariants that they are formed from these curvature tensors 
that play an important role in the classification of space-
times. Invariants useful in distinguishing Riemannian 
manifolds or manifolds that they have a positive and well 
defined metric tensor. In order to investigate true 
singularities one must look at quantities that are 
independent of the choice of coordinates. One of these is the 
KS which, at the origin only or r = 0 possesses a 
singularity that is a physical singularity which we can also 
call gravitational singularity. At r = 0 the curvature 
becomes infinite indicating the presence of a singularity. 
At this point the metric and space-time itself, is no longer 
well-defined. For a long time it was thought that such a 
solution was non-physical. However, a greater 
understanding of general relativity led to the realization 
that such singularities were a generic feature of the theory 
and not just an exotic special case. Such solutions are now 
believed to exist as called black holes. 

This contribution is an effort to connect geometry to 
information and an attempt to investigate the 
consequences of essential KS entropy and information 
singularities that may result from the elimination of mass 
M that enters the metric. Since α = 3.04×10−8 and r<λ = 
4.94×1015 m (Haranas and Gkigkitzis, 2011) and 
considering a 1 solar mass black hole Equation 29 the 
exponential quantities e−r/λ≅1 and e−2r/λ≅1 are both 
approximately equal Equation 22 simplifies to: 
 

( )

2 2

2
24 6

2

1
1

248

12
1 1

2

r

G M
K

rGM
c r

rc

α
λ

αα
λ

  + +  
  ≅

    + +− +         

 (36) 
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Therefore we find that the KS has an essential 
singularity that is given by the equation: 
 

( ) ( )2

2
1 1

H
SchKS

GM
r R

c
α α≅ + = +  (37) 

 
where, RSch is the gravitational radius of the 
Schwarzschild black hole. At this point we see that this 
particular metric does posses an event horizon and 
therefore the entropy cannot be calculated on the 
horizon. However, the existence of a singular boundary 
is apparent: the “Kretcmann horizon” given by Equation 
37. To proceed let us assign a definition of entropy, the 
KS entropy, similar to that calculated to (Haranas and 
Gkigkitzis, 2011), which reads as follows: 
 

( )

( )

23

2

22

4 1

4

4 1

BB
KS KS

B

p

k Gc k
S A

G c

M
M k

m

π α

π α

+ 
= = 
 

 
= +   

 

h h

 (38) 

 
where, AKS is the surface area defined by the Equation 
37. This definition suggests that the KS horizon is a 
depository of information (or infinite information). Next 
we obtain that Equation 40: 
 

( )2 1
p KS

B

m S
M

kα π
=

+
 (39) 

 
 And: 

 

( )2 1H

p KS
KS

B

Gm S
r

c kα π
=

+
 (40) 

 
Substituting Equation 38 in Equation 39 in 

Equation 36 we express KS as a function of the 
entropy SKS and we find that: 
 

 

( ) ( )

( )

8

2 4 2 2 2

2
2

12 1

2 1

1
1

pB KS
KS KS

p KS B

P KS

B

Gmc k S
K S

G m S c k

Gm S

c k

α λ α

α
λ α

 
= + 

+  

 
 + +
 + 

 (41) 

 
For 1 solar mass black hole the most significant 

contribution comes from the coefficient of the 1/S2
 term and 

therefore the KS entropy can be written as Equation 42: 

( ) ( )34

2 2

1 6B
KS

p KS

c k
S

G m k

α
α

+
= ±  (42) 

 
And therefore the number of information N can be 

written as a function of the KS in the following way: 
 

 ( ) ( )34

2 2

1 6

ln 2KS
p KS

c
N K

G m k

α
α

+
≅  (43) 

 
Similarly, taking into account the same assumptions 

as in Equation 35 we obtain KS of a fully curved 
Yukawa type of metric is given by Equation 28 can be 
approximated in the following way Equation 44: 
 

 

2 2

4 6

2

48

16 16
1 1 1

12 12

Yuk sch cor

G M
K K K

c r

r rα α
λ λ

= + ≅

    + + + +    
    

 (44) 

 
Next, u sing expressions for the mass and the 

gravitational radius for a Yukawa black hole as a 
functions of entropy for a solar mass black hole, as it 
given in (Haranas and Gkigkitzis, 2013b) we are trying 
to express the singularity in the gravitational radius as a 
singularity in essence in entropy S Equation 45 and 46:  
 

( ) ( )2 1
p

B

m S
M S

kπ α
=

−
 (45) 

 

( )

( ) ( )

( ) ( )

2

2

2
1

12
1

2

1
1

H

p

B

B

GM
r

c

m SG

c k

S
p

k

α

α
α

π

α
π α

= +

+
= +

= +
+

l

 (46) 

 
Equation 41 has only one singularity at r = 0 and 

there is no other essential singularity. Using Equation 
41 and taking into account the same assumptions as in 
Equation 35 we obtain that the KS as a function of 
entropy S on the horizon of such a black hole up to the 
O(α3) the most significant contribution comes from 
the coefficient of the 1/S2 term and therefore the KS 
can be written as Equation 47: 
 

( )
( )

2 2 2 2
3

64 6 2

12
1

1

p B
Yuk

p

G m k
K

c S

π
α α

α
≅ − −

+l

 (47) 
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Which tends to zero as the entropy approaches infinity. 
Solving for the entropy S we obtain an expression of the 
entropy as a function of the scalar Kyuk to be Equation 48: 
 

( )
( )

( ) 1/2
2

32 3

3 12 1

1

p B

p yuk

Gm k
S

c K

α απ α
α

 + +−
 = ±
 +  

l
 (48) 

 
Next using (Haranas and Gkigkitzis, 2013a) we write 

the entropy to be: S = NkBln2, we write the KS as a 
function of entropy and number of information N 
according to the equations: 
 

 
( )
( )

( ) 1/2
2

32 3

3 12 1

ln 2 1

p

p Yuk

Gm
N

c K

α απ α
α

 + +−
 =
 +  

l
 (49) 

 
N = 0 only if alpha imaginary. Both Equation 43 and 

44 can exhibit a singularity if and only if the coupling 
constant becomes negative i.e., α = -1. A negative α 
would introduce a repulsive component in the Yukawa 
correction something that it is known as a fifth force. 

Next we consider the Reissner-Nordstrom (RN) 
metric the KS does not possess a singularity besides the r 
= 0 case. The event horizon RN metric has the following 
solutions Equation 50: 
 

( )2 2
0 0

2 2
0

41

2HRN

G Q GMGM
r

c c

ε πε
ε π

+
= ±  (50) 

 
 And therefore the corresponding entropy becomes 

Equation 51: 
 

 
( )

3 2

2 22
0 0

0 0

2

4

4

4

B
RN RN

BB

c k k GM
S A

G c

k M G Q GMk Q

c c

π

π ε ε
ε ε

 
= = 
 

+
+ ±

B

h h

h h

 (51) 

 
Solving for the mass M in terms of the entropy we 

obtain Equation 52: 
 

 
4 2

2
0 0
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Similarly the event horizon as a function of entropy 

becomes Equation 53: 
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 (53) 

 
And therefore substituting for rNRH and M we write the 

KS of the Reissner-Nordstrom (RN) metric as a function 
of entropy in the following way Equation 54 and 55: 
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 (54) 

 
Where: 
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 (55) 

 
The KS of the Reissner-Nordstrom (RN) metric 

possesses a singularity when Ф = 0, for the following values 
of entropy out of which the first two are real numbers 
Equation 56 to 59: 
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And therefore the values of the number of 

information N at which Equation 49 is singular are 
Equation 60 to 63: 
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Finally for the internal metric solution of a star there 

is a metric singularity at r = rH when Equation 64: 
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And therefore the entropy becomes Equation 65: 
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where, Rgrsch is the Schwarzschild gravitational radius. 
Therefore solving for the mass M from Equation 66 
we obtain that: 
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And thus Equation 33 of the corresponding KS can be 

written in terms of the entropy S as follows Equation 67: 
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 (67) 

The KS of the internal metric solution has an essential 
entropy singularity that is given from Equation 68: 
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Or an equivalent number of information singularity 

that takes the value Equation 69: 
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To compare we write the KS of the Schwarzschild 

metric on the horizon an a function of entropy and 
information to be Equation 70: 
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5. DISCUSSION 

The Schwarzschild solution was the first physically 
significant solution of the field equations of general 
relativity. It showed how space time is curved around 
spherically symmetric distribution of matter. The KS for 
a Schwarzschild black hole is inversely proportional to 
the distance. In Equation 18 a formula for the KS is 
given for a general spherically symmetric metric which 
we apply to a fifth force metric that incorporates a 
Yukawa correction and notice that KS possesses an 
essential singularity at the horizon. Then we write the 
metric of a Yukawa type of Schwarzschild black hole 
that is curved in along both the time and radial 
coordinate and we notice in Equation 29 that the 
singularity disappears. This is also the case for the non-
rotating but electrically charged source vacuum solution 
as it is given by the Reissner-Nordstrom solution in 
Equation 29-31. In considering the internal star metric 
solution we see again the occurrence of an essential 
singularity in Equation 34. The introduction of the 
concept of entropy leads to the definition of “KS 
horizon”, beyond the distinction between gravitational 
singularities and essential geometric singularities. This 
allows us to define and investigate singularities in 
essence in entropy S. The equations for the entropy, such 
as 42, 48, 50, 58 and 59 as well as the equations for the 
corresponding information may result in negative and 
complex values for the entropy, which makes it necessary 
to seek an appropriate framework for the interpretation of 
these results in an intersection between or combination of 
general relativity and quantum mechanics.  
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The scalar gives the curvature of the spacetime as a 
function of the radial distance r in the vicinity as well 
as inside of the black hole. Furthermore, the 
Kretschmann scalar helps us understand the black 
hole’s appearance as a whole entity from a geometric 
as physical point of view. It can be applied in solar 
mass size black holes, neutron stars or supermassive 
black holes at the center of various galaxies.  

Finding a setting in which the entropy’s full range of 
values would have a meaningful interpretation is an 
essential step in interpreting our results on entropy. 
Negative entropy appears as an interesting feature of 
higher derivative gravity (Cvetic et al., 2002) 
(Schwarzschild-Anti-deSitter and Schwarzschild-deSitter 
gravity black holes) and has been suggested that this 
appearance of negative entropy may indicate a new type 
instability where a transition between SdS (SAdS) black 
holes with negative entropy to SAdS (SdS) black holes 
with positive entropy would occur and where the classical 
thermodynamics would not apply any more. It was also 
suggested that such a new type phase transition is 
presumably related with the known fact that strong energy 
condition in higher derivative gravity maybe violated 
(Cvetic et al., 2002). On the other hand, entropy can be 
negative and erasing bit from a system can result in a net 
gain of work, leading to the result of the effect that a 
quantum computer may cool itself by erasing bits of 
information (Del Rio et al., 2011). It will be interesting if 
such negative entropy idea can apply to black holes. This 
can change Hawking radiation-maybe under some 
condition, the black hole can also be cooling system (not 
only radiating) or other unknown as of now effects may 
be happen. Modeling our universe as just a big computer, 
deleting information in a black hole may occur through 
accretion matter to black hole and the black hole does 
not radiate but cools the universe. This seems to be in 
accordance with another approach of suggesting that 
Hawking radiation, via quantum tunneling, carries entropy 
out of the black hole, a process that represents a net gain of 
information drawn out from the black hole (Zhang et al., 
2011). So, Hawking radiation carries not only entropy, but 
also information, out of the black hole. 

Negative values for the entropy point towards a 
quantum entropy which can be understood operationally 
as quantum channel capacity (Horodecki et al., 2005). In 
the language of communication theory, the amount of 
information originating from a source is the memory 
required to faithfully represent its output and this amount 
is given by its entropy. Negative entropy has a physical 
interpretation in terms of how much quantum 
communication is needed to gain complete quantum 

information possession of a system in the total state 
(Horodecki et al., 2005). It is possible for a black hole to 
correlate with its environment in ways such as quantum 
entanglement using procedures such as quantum 
teleportation where qubits (the basic units of quantum 
information) can be transmitted exactly (in principle) 
from one location to another, without the qubits being 
transmitted through the intervening space. Therefor it 
can be correlated to a reference system that regulates 
maximally entangled states of a system which can be 
used as a teleportation protocol to transmit quantum 
states from a source to a receiver. 

Landauer’s principle states that the erasure of data 
stored in a system has an inherent work cost and therefore 
dissipates heat. However, this consideration assumes that 
the information about the system to be erased is classical 
and does not extend to the general case where an observer 
may have quantum information about the system to be 
erased, for instance by means of a quantum memory 
entangled with the system. The study cost of erasure is 
determined by the entropy of the system, conditioned on the 
quantum information an observer has about it. The more an 
observer knows about the system, the less it costs to erase it. 
Entropies can become negative in the quantum case, when 
an observer who is strongly correlated with a system may 
gain work while erasing it, thereby cooling the environment 
(Del Rio et al., 2011). 

The notion of complex-valued as well as negative 
information entropy remains to be given some physical 
sense interpretation through possibly an interaction range 
consideration. We can only conjecture that the complex 
entropy may be the result of a certain background free 
energy and/or scale invariance. From a quantum 
mechanics point of view, this might indicate the presence 
of a non Hermitian Hamiltonian (Rotundo and Ausloos, 
2013). Certain observations indicate this direction. An 
attempt to a dynamical interpretation of a classical 
complex free energy is found in (Zwerger, 1985) where 
the author pointed out that the problem is to determine a 
characteristic ”relaxation” time for some process in 
which a dynamical equation (Langevin or Fokker-
Planck) is connected to some Hamiltonian or some 
corresponding transfer matrix. A probability current can 
be written, in fact, in terms of some unstable mode times 
an equilibrium factor which is the imaginary part of the 
free energy. The imaginary part of the free energy (or 
largest eigenvalues) give some information about the 
”nucleation stage” of the dynamics, i.e., an initial decay 
rate out of a metastable state of a system after a sudden 
change in an effective field (Zwerger, 1985). This 
metastable state in our may correspond to a physical 
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gravitational singularity, independent of coordinates, 
where instead of “relaxation time”, one may consider 
the “spatial aspect of the phenomenon”, e.g., through 
some correlation range length ξ that corresponds to a 
certain differential distance of the horizon. The real 
part, of course of such a free energy, determines the 
equilibrium energy state.  

6. CONCLUSION 

Invariance plays a very essential role in mathematics 
and physics. It is one of most important tools of tensor 
analysis as well as of the theory of relativity and 
cosmology. Black hole is perhaps the least exemplary of 
physical entities. Indeed, despite their appearance at the 
center of most if not all spiral galaxies, black holes are 
entities for which it is most often said “physics breaks 
down”. In addition to this, the physics of black holes has 
been revolutionized by developments that grew out of 
Jacob Bekenstein's realization that black holes have 
entropy. Steven Hawking raised profound issues 
concerning the loss of information in black hole 
evaporation and the consistency of quantum mechanics 
in a world with gravity. In this direction, we have studied 
Kretschmann scalar curvature invariant which may be of 
great utility in the study and classification of black hole 
singularities. We have discussed the notion of negative 
and complex-valued information entropy for which there 
is a need to give some physical sense interpretation 
through possibly quantum considerations. These new 
findings may open the door to solving many previously 
intractable problems in quantum information theory of 
black holes. It is concluded that such generalizations are 
not only interesting and necessary for discussing 
information theoretic properties of black hole gravity, 
but also may give new insight into conceptual ideas 
about entropy and information.  
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