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ABSTRACT

In this article we present some results in existeamed uniqueness of strong and classical solutbrise
hydrodynamic equations modeling solar and steliads: The system of Navier-Stokes equations faarsol
and stellar winds is considered in its correspogdiifferential evolution equation formd/git+A)u(t) =
F(u(t), t), whereF is a given non-linear function and -A is the iitlisimal generator of the analytic
semigroup arising from the hydrodynamic Stokes afoer
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1. INTRODUCTION ON/at+0Nu)=0
mN(du / ot) + mN (u )u + O(NKT) = Nmg
The solar corona, i.e., the outer atmosphere of the and (3/2)@ /3t)(NKT )+ @ /3t)((L/ 2Nmu?)

Sun, is in continuous hydrodynamical expansion,

producing out through the interplanetary mediuntoa f DG/ 2NKTu + (1/ 2Nmu‘u)
of plasma, which is known as the solar wind. =Nmg [ + O H«CT)

Parker (1958) was the first who observed that i flu
description is appropriate and hydrodynamic stregrs The above equations are the Navier-Stokes equations
possible, at least out to distances at the order offor motion of a fluid with mass densilym and a specific
astronomical units from the Sun. heat ratio ofy= 5/3.

The fully ionized gas of the solar corona, contagni Numerical solutions for this equations, as and for

approximately 90% hydrogen and 10% helium is plasmathe corresponding case including viscosity, havenbe
described by Boltzmann equations concerning studied by Noble and Scarf (1963), Summers
distribution functions for electrons, protons arigha- (1980a) and Whanget al., (1965) describing the
particles. LeNN the total number density. Let also that all streaming solar atmosphere.

species have the same local temperafuaad diffusion The heat capacity ratigis related straightforwardly
effects can be neglected, i.e., they have the samgy the degrees of freedom of the particles which
streaming velocityu. If g is the acceleration field is  constitute the specific studied population. Undee t
the coefficient of thermal conductivityk is the  study of electron populations of the Solar Windspia
Boltzmann constant, m is the mean mass per particleand for a time-span of many years, by the appticatif
then for a fluid with isotropic pressure, negligibl the framework of the Tsallis entropy, that is bg tise of
viscous loss and no external heat source thekappa distributions, the number of the degrees of
hydrodynamic equations are: freedom of the electron populations of electronkictv

© 2014 Panagiotis N. Koumantos, Panaiotis K. Pavlakos and Xenophon D. Moussas. This open access article is distributed under a Creative Commons
Attribution (CC-BY) 3.0 license which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
DOI: 10.3844/pisp.2014.136.139



Panagiotis N. Koumanta al. / Physics International 5 (2): 136-139, 2014

contribute to the internal energy of the populatiois
observed to vary within the passage of time and thi
variation follows the characteristic periodicitie$ the

Solar Wind. These degrees of freedom may vary from
three, corresponding to the motion of the plasma

electrons and ions in space, to two, in the cass @xial
symmetry, or to one, in the case of spherical sytryne
This has as a consequence that the heat capaiiityyra
obtains the valug’= 5/3, forn = 3 degrees of freedom,
the valuey = 2, forn = 2 degrees of freedom and the
value y = 3, forn = 1 degrees of freedom, accordingly
(Gkountrast al. (2014) work in progress).

As has been noted by Summers (1980b) the role of

viscosity in solar wind is not well-understood, cgnthe
model studied by Scarf and Noble (1965) in which
included viscous effects obtained physically unptaiade
results, while a well-behaved model including visto

For our approximation we consider the Hilbert space
H with elements uOL%(X, B(X), A% such that

jx u My (x)dA%(x) =0 for all ¢ OW?(X,B(X),1%).

By W™P(X,B(X),A*), 1<p<w as usual we denote the
corresponding Sobolev spaces, i.e., the space lof al
functionsg in LP(X, B(X), %) such that the distributional
derivatived®gOL"(X, B(X), A%), for all sON2 with [skm

1
under the nornfg|,, = (Zoﬂsﬁm [ 10°9(x) |"d/13(x))p .

Let the non-negative and self-adjoint Stokes operat
S with domain.
D(S) =W??(X,B(X),A*)NW,"%(X,B(X),A1% and range
R(S = LAX, B(X), A°) defined by the formul&: = -P.A,
whereP, denotes the projection operator fraAgX, B(X),
A% onto H and A is the Laplace operator. Let also

studied by Whang and Chang (1965) imposed the{e™S:t>0} be the analytic semigroup generateby

possibility of physically realistic boundary cordits.

Then applying the projection operatortB both sides

On the other hand Leer and Holzer (1972) studiedf the Navier-Stokes Equation 1.1 yields:

kinetic and hydrodynamic models of collisionlessaso
wind proton gas and found that whilst heat condurcti

and viscosity are neglected in hydrodynamic model,

they are automatically included in the kinetic mlode
and the results of the two approximations are yethe

(@/0t+S+Bu=PG,tOR

where,B: = Py(u, grad) (Giga, 1983; von Wahl, 1985).
Therefore, setting: R - Rt — o(t): = u(xt), the

same. Also Leer and Holzer (1972) proposed thatsystem of equations can be written as:
models of the quiet solar wind should be based on a

hydrodynamic formulation.

For a modern excursion in solar wind and cosmic-ray

astrophysics we refer to the book of Schlickei2&0Q).
In this note we establish analytic approximation of

(d/dt + Au(t) = F(u(t),1), tOR (2.1)

where, the operatok: = Sis the non-negative and self-
adjoint stokes operator and the functiBnabsorbs the

the problem and we consider the equations for anon-linear terms.

hydrodynamic model of solar and stellar winds ie th
dimensional analysis form:

(Qu/ot)—Au+(u,grad)u+gradp=G (1.2)

With divu = 0 in XxR andu|oX = 0, whereX is a
smooth domain of Rand by definition the operator

3

(u,grad):zzjzluj @1/0x).

This system describes the motion of viscous
incompressible fluid. The function u*&R - R®, with u(x;t)
= (U (x,1), ux(x.t),us(x,t)) represents the velocity of the fluid,
p(x.t) is the pressure and GR - R® is the given external
force, withG(x,t) = (G1(x.t), Go(x.t), G(X.t)).

2.MAIN RESULTS

In what follows for classical notions and termimgyjo
in functional analysis and semigroups we referHhe t
book of Yosida (1980).
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In order to deal with the last equation we first
consider the corresponding linear evolution equatio

(d/dt+Au(t) = f(t), tOR (2.2)

As is well-known, we may assume that there exist
constantsu, 30 such thaﬂe‘tAH <pue® forallt OR".

We denote bC,(R, R®) the Banach space of bounded
continuous functions¢g: R R, endowed with
supremum normg|=sufet} tOR and letC(R, R’
the space of continuous functiogs R — R°. Also by
P(R, R%) we denote the closed subspaceCgR, R®) of
all almost periodic functions i6,(R, R®).

Let alsoM*(R, R%) be the Banach space of Bochner-
measurable functionsg: R R® for which

J':+1Hgo(s)Hd)I1(s)<+oo, for all t O R, under the norm

1= sup{ [Mlo6jar e)1o p} .

-

—
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A function ¢: R— Dom(A) is called a strong solution
(respectively a classical solution) Bof (2.1) or (2.2) if
it is strongly differentiable forA-almost everytOR
(respectively for ever{IR).

In the sense of semigroup approach to differential
of

evolution equations, concerning the case
magnetohydodynamics (Athanasiadat al., 2014a;
2014b), for the hydrodynamic approximation thatawe
intrested in, we obtain the following results.

Proposition 2.1

If fOM'(R,R*) then Equation 2.2 has at least one

strong solutior in Cy(R, R).
Proof. Let u: R — Rt - u(t)=[_e ™A (8)dA¥(s).
Then, for everyOR:
[ Jeeant(9)daics)
< Uy jo“’e“’SH f(t-s)|dA()
o (ML 5o
< ﬂozn=of: &% f (t-9)|dAY(s)

= ﬂo(z::oe_dn) |'f |M1s

U
e b

Hence,vdCy(R, RY).

For h>0 follows:
h™(u(t +h) - u(t))
=hi(e™-1)[ eI (9dA(s)
+h [T M IA(F(9) - £ (©)dAYS)

+h [T (@ CMIA - 1) £ (0)dAY() + (1)

Letting h- 0+ we conclude
o(t) = hfim(u(t +h)—u(t)) =-Au(t) + f(t), for almost every
tOR, i.e., vis a strong solution iGy(R, R?).

Let @ the corresponding Nemytskii operator of the
non-linear functiorF: R®R - R® appearing in Equation
2.1, i.e., for every: R - R®, @y is defined byay(t): =
Fyt),1),tOR

Proposition 2.2

Let &yOMY(R, R®) providedyOM® (R, R®) and there
exists a constanf>0 such that|®y, - dy,| <7|y,-y,| for

all y;, y,OMYR, R®) and 1 Jd'n<1. Then Equation 2.1
has at least one strong solutioin M*(R, R®).
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Proof. We consider the Hamerstein-type operator
=:M¥R,R*) -~ M*(R,R®) which to anyyOM* (R, R’
associates a strong solutiay in Cy(R, R®) 0 MY(R, R)
of the linear evolution equatioRr(t) + Ax(t) = ®y(t) such

that = y=| e *oydii(s), tOR Lett, ofR andy,,

yv,OMYR, R®). Then combining the assumptions and
Fubini theorem it follows:

[ Ew® - Zy,0d1s)
< [Tl low -9 - @y, - 9lar(9aA ()
SO Y1~ Yo s

Thus, = is a contraction operator MR, R%). By
similar arguments we have the next result.

Proposition 2.3

Let ¢yOP(R, R®) provided yOP(R, R’) and there
exists a constang>0 such that|®y, - dy,||<n|y, -y

for all y;, Y,OP(R, R®) with 1 J* n<1. Then there
exists exactly one classical solutionof Equation 2.1
in P(R, R%).
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