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Abstract: Experiments have repeatedly revealed the existence of a dynamical 

structured fractal 3-space, with a speed relative to the Earth of some 500 km 

sec
−1

 from a southerly direction. Experiments have ranged from optical light 

speed anisotropy interferometers to zener diode quantum detectors. This 

dynamical space has been missing from theories from the beginning of physics. 

This dynamical space generates a growing universe and gravity when included 

in a generalised Schrodinger equation and light bending when included in 

generalised Maxwell equations. Here we review ongoing attempts to construct a 

deeper theory of the dynamical space starting from a stochastic pattern 

generating model that appears to result in 3-dimensional geometrical elements, 

“gebits” and accompanying quantum behaviour. The essential concept is that 

reality is a process and geometrical models for space and time are inadequate. 
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Introduction 

The phenomena of space and time are much richer 

and more complex than captured by the prevailing 

geometrical models, which originated with the earliest 

work by Galileo and Newton. These geometrical models 

capture only very limited macroscopic properties, 

namely Euclidean geometry in the case of “space” and 

the quantification of “time” in its geometrical modelling. 

In the 20th century the amalgamation of these two 

geometrical models into the one “space-time” model has 

resulted in deeper problems, namely the disagreement 

with numerous experiments, which, as one example, 

reveal the anisotropy of the speed of light, but which is 

excluded by the space-time model. To develop a deeper 

unified model for space, time and quantum matter, it is 

essential that these phenomena are not built into the 

theory from the very beginning: Rather they should be 

emergent. One approach is that of “Process Physics”, 

(Cahill, 2005a), which bootstraps a unified treatment of 

reality from a stochastic self-accessing and self-limiting 

stochastic network. In that sense the patterns posses a 

semantic information meaning, namely that the 

dynamical system self-recognises and interacts with 

patterns in a manner determined by the structure of the 

patterns, rather the entities being specified by syntactical 

rules, as in present day physics, in which symbols and 

the rules of manipulation are specified outside of the 

theory, i.e., “laws of physics’ are imposed. In Process 

Physics the aim is to have self-generated phenomena that 

determine their own interaction behaviours. In doing so 

we discover that reality has somewhat the appearance of 

a neural network in which entities exist as sustaining 

network patterns, which we characterise as “semantic 

information”, i.e., information that has a meaning 

internal to the system. Only at a higher level can we 

extract and summarise, in a limited manner, emergent 

rules of existence and interaction, in the style of 

conventional physics. 

Stochastic Pattern Formation: Space 

Here we describe a model for a self-referentially 

limited neuraltype network and then how such a network 

results in emergent geometry and quantum behaviour 

and which, increasingly, appears to be a unification of 

space and quantum phenomena. Process Physics is a 

semantic information system and is devoid of a priori 

objects and their laws and so it requires a subtle 

bootstrap mechanism to set it up. We use a stochastic 

neural network, Fig. 1, having the structure of real-

number valued connections or relational information 

strengths Bij (considered as forming a square matrix) 

between pairs of nodes or pseudo-objects i and j. In 

standard neural networks the network information 

resides in both link and node variables, with the semantic 
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information residing in attractors of the iterative 

network. Such systems are also not pure in that there is 

an assumed underlying and manifest a priori structure. 

The nodes and their link variables will be revealed to 

be themselves sub-networks of informational relations. 

To avoid explicit self-connections Bii ≠ 0 which are a 

part of the subnetwork content of i, we use antisymmetry 

Bij = -Bji to conveniently ensure that Bii = 0, Fig. 1b. 

At this stage we are using a syntactical system with 

symbols Bij and, later, rules for the changes in the values 

of these variables. This system is the syntactical seed for 

the pure semantic system. Then to ensure that the nodes 

and links are not remnant a priori objects the system 

must generate strongly linked nodes (in the sense that the 

Bij for these nodes are much larger than the Bij values for 

non- or weakly-linked nodes) forming a fractal network; 

then self-consistently the start-up nodes and links may 

themselves be considered as mere names for sub-networks 

of relations. For a successful suppression the scheme must 

display Self-Organised Criticality (SOC) which acts as a 

filter for the start-up syntax. The designation ‘pure’ refers 

to the notion that all seeding syntax has been removed. 

SOC is the process where the emergent behaviour displays 

universal criticality in that the behaviour is independent of 

the particular start-up syntax; such a startup syntax then 

has no ontological significance. 

To generate a fractal structure we must use a non-

linear iterative system for the Bij values. These iterations 

amount to the necessity to introduce a time-like process. 

Any system possessing a priori ‘objects’ can never be 

fundamental as the explanation of such objects must be 

outside the system. Hence in Process Physics the 

absence of intrinsic undefined objects is linked with the 

phenomena of time, involving as it does an ordering of 

‘states’, the present moment effect and the distinction 

between past and present. Conversely in non-Process 

Physics the necessity for a priori objects is related to the 

use of the non-process geometrical model of time, with 

this modelling and its geometrical-time metarule being 

an approximate emergent description from process-time. 

In this way Process Physics arrives at a new modelling 

of time, process time, which is much more complex 

than that introduced by Galileo, developed by Newton 

and reaching its so-called high point but deeply 

flawed Einstein spacetime geometrical model. Unlike 

these geometrical models process-time does model the 

Now effect. Process Physics also shows that time 

cannot be modelled by any other structure, other than 

a timelike process, here an iterative scheme. There is 

nothing like time available for its modelling. The near 

obsession of theoretical physicists with the 

geometrical modelling of time and its accompanying 

notion of analytical determinism, has done much to 

retard the development of physics. 

The stochastic neural network so far has been 

realised with one particular scheme involving a 

stochastic non-linear matrix iteration, see (1). The matrix 

inversion B
−1

 then models self-referencing in that it 

requires, in principle, all elements of B to compute any 

one element of B
−1

. As well there is the additive Self-

Referential Noise (SRN) wij which limits the self-

referential relational information but, significantly, also 

acts in such a way that the network is innovative in the 

sense of generating semantic information, that is 

relational information which is internally meaningful. 

The emergent behaviour is believed to be completely 

generic in that it is not suggested that reality is a 

computation, rather it appears that reality has the form of 

a self-referential orderdisorder information system. It is 

important to note that Process Physics is a non-

reductionist modelling of reality; the basic iterator (1) is 

premised on the general assumption that reality is 

sufficiently complex that self-referencing occurs and that 

this has limitations. Equation 1 is then a minimal 

bootstrapping implementation of these notions. At higher 

emergent levels this self-referencing manifests itself as 

interactions between emergent patterns, but other novel 

effects may also arise. 

 

 
 (a) (b) 

 
Fig. 1. (a) Graphical depiction of the neural network with links Bij ∈ R between nodes or pseudo-objects. Arrows indicate sign of Bij. 

(b) Self-links are internal to a node, so Bii = 0 
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To be a successful contender for the Theory Of 

Everything (TOE) Process Physics must ultimately prove 

the uniqueness conjecture: That the characteristics (but 

not the contingent details) of the pure semantic 

information system are unique. 

This would involve demonstrating both the 

effectiveness of the SOC filter and the robustness of the 

emergent phenomenology and the complete agreement 

of the latter with observation. 

The stochastic neural network is modelled by the 

iterative process Equation 1: 
 

( )1 , , 1,2,...,2
ij ij ijij

B B a B B w i j N−→ − + + =  (1) 

 
where, wij = -wji are independent random variables for 

each ij pair and for each iteration and chosen from some 

probability distribution. Here at is a parameter the 

precise value of which should not be critical but which 

influences the self-organisational process. 

Stochastic Networks from QFT 

It may be helpful to outline the thoughts that led to 

(1), arising as it did from the quantum field theory 

frontier of quark physics. A highly effective 

approximation to Quantum Chromodynamics (QCD) 

was developed that made extensive use of bilocal fields 

and the Functional Integral Calculus (FIC), (Cahill, 

1989; 1992; Cahill and Gunner 1998) for reviews of this 

Global Colour Model (GCM). In the GCM the 

bilocalfield correllators (giving meson and baryon 

correllators) are given by the generating functional: 
 

[ ] [ ] ( ) ( )( )4 4exp , ,Z J DB S B d xd yB x y J x yθ θ θ= − +∫ ∫  (2) 

 

Here x, y∈E
4
, namely a Euclidean-metric space-time, as 

the hadronic correlators are required for vacuum-to-vacuum 

transitions and as is well known the use of the Euclidean 

metric picks out the vacuum state of the quantum field 

theory. The physical Minkowski-metric correlators are then 

obtained by analytic continuation x4→ix0. Equation 2 

follows from (approximately) integrating out the gluon 

variables and then changing variables from the quark 

Grassmannian functional integrations to bilocal-field 

functional integrations. Here the θ index labels generators 

of flavour, colour and spin. This form is well suited to 

extracting hadronic phenomena as the vacuum state of 

QCD corresponds to a BCS-type superconducting state, 

with the qq Cooper pairs described by those non-zero 

mean-field Bθ (x, y) determined by the Euler-Lagrange 

equations of the action Equation 3: 
 

[ ]
( )

0
,

S B

B x yθ

δ
=

δ
 (3) 

That (3) has non-zero solutions is the constituent-

quark/BCSstate effect. This is a non-linear equation for 

those non-zero bilocal fields about which the induced 

effective action for hadronic fields is to be expanded. 

Rather than approximately evaluating as a functional 

integral, as done in (Cahill, 1989; 1992; Cahill and 

Gunner 1998), we may use the Parisi-Wu stochastic 

‘quantisation’ procedure (Parisi and Wu, 1981), which 

involves the Langevin iterative Equation 4: 

 

( ) ( ) [ ]
( )

( ), , ,
,

S B
B x y B x y w x y

B x y

θ θ θ
θ

δ
→ − +

δ
 (4) 

 

where, w
θ
 (x, y) are Gaussian random variables with zero 

means. After many iterations a statistical equilibrium is 

achieved and the required hadronic correllators may be 

obtained by statistical averaging: <B
θ
 (x, y)B

φ
 (u, v)... >, 

but with again analytic continuation back to Minkowski 

metric required. In particular, writing: 

 

( ), ,
2 2

x y x y
B x y x yθ + +   = φ Γ −   

   
 

 

Then φ(x) is a meson field, while Γ(x, X) is the meson 

form factor. 

That (4) leads to quantum behaviour is a remarkable 

result. The presence of the noise means that the full 

structure of S[B] is explored during the iterations, 

whereas in (2) this is achieved by integration over all 

values of the B
θ 

(x, y) variables. The correllators <B
θ 

(x, 

y) B
φ 

(u, v)... > correspond to complex quantum 

phenomena involving bound states of constituent quarks 

embedded in a BCS superconducting state. However the 

Euclidean-metric E
4
-spacetime plays a completely 

classical and passive background role. 

Now (4) has the form of a Stochastic Neural Network 

(SNN, see later), with link variables B
θ 

(x, y), that is, 

with the nodes being continuously distributed in E
4
. An 

interesting question arises: If we strip away the passive 

classical E
4
 background and the superscript indices, so 

that B
θ 

(x, y) → Bij and we retain only a simple form for 

S[B], then does this discretised Langevin equation, in 

(1), which now even more so resembles a stochastic 

neural network, continue to display quantum behaviour? 

It has been found that indeed the SNN in (1) does exhibit 

quantum behaviour, by generating a quantum-foam 

dynamics for an emergent space and with quantum-

‘matter’ being topological-defects embedded in that 

quantum-foam in a unification of quantum space and 

matter. Indeed the remarkable discovery is that (1) 

generates a quantum gravity. Note, however, that now 

the iterations in (1) correspond to physical time and we 

do not wait for equilibrium behaviour. Indeed the non-

equilibrium behaviour manifests as a growing universe. 
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The iterations correspond to a non-geometric modelling 

of time with an intrinsic arrow of time, as the iterations 

in (1) cannot be reversed. Hence the description of this 

new physics as process physics. 
If (1) does in fact lead to a unification of gravity and 

quantum theory, then the deep question is how should 

we interpret (1)? The stochastic noise has in fact been 

interpreted as the new intrinsic Self-Referential Noise 

when the connection with the work of Godel and 

Chaitin became apparent (Cahill, 2005a). Hence 

beneath quantum field theory there is evidence of a 

self-referential stochastic neural network and its 

interpretation as a semantic information system. Only 

by discarding the spacetime background of Quantum 

Field Theory (QFT) do we discover the necessity for 

space and the quantum. 

Stochastic Neural Networks 

We now briefly compare the iteration system in (1) to 

an Attractor Neural Network (ANN) and illustrate its 

basic mode of operation. An ANN has link Jij ∈ R and 

node si = ±1 variables (i, j = 1, 2, ... N), with Jij = Jji and 

Jii = 0. Here s = +1 denotes an active node, while s = -1 

denotes an inactive node. The time evolution of the 

nodes is given by, for example Equation 5: 

 

( ) ( )sin 1i ij j

j

s t J s t
 

= − 
 
∑  (5) 

 

To imprint a pattern its si ∝ ξi values are imposed on 

the nodes and the Hebbian Rule is used to change the 

link strengths Equation 6: 

 

( ) ( ) ( ) ( )1 1 1ij ij i jJ t J t cs t s t= − + − −  (6) 

 

And for p successively stored patterns (ξ1
, ξ2

, ... ξp
) 

we end up with Equation 7: 

 

1

,
p

ij i jJ i jµ µ

µ=

= ξ ξ ≠∑  (7) 

 

The imprinted patterns correspond to local minima of 

the ‘energy’ function Equation 8: 

 

{ } 1

2
ij i jE s J s s  = −  ∑  (8) 

 

Which has basins of attraction when the ANN is 

‘exposed’ to an external input si(0). As is well known 

over iterations of (5) the ANN node variables converges 

to one of the stored patterns most resembling si(0). 

Hence the network categorises the external input. 

The iterator (1), however, has no external inputs and 

its operation is determined by the detailed interplay 

between the order/disorder terms. As well it has no node 

variables: Whether a node i is active is determined 

implicitly by |Bij| > b, for some, where b is some 

minimum value for the link variables. 

Because Bij is antisymmetric and real its 

eigenvalues occur in pairs: ib, -ib (b real), with a 

complete set of orthonormal eigenvectors ξµ
, µ = ±1, 

±2, .., ±N, (ξµ*
 = ξ-µ

) so that Equation 9: 

 
*

1, 2,..

,jk j kB ib b b Rµ µ
µ µ −µ

µ=± ±

= ξ ξ = − ∈∑  (9) 

 

where, the coefficients must occur in conjugate pairs for 

real Bij. This corresponds to the form Equation 10: 

 

1

1

21

2

0 0 0

0 0 0

0 0 0
,

0 0 0

.

.

b

b

b
B MDM D

b

−

 +
 

− 
 +
 = =
 −
 
 
 
 

 (10) 

 

where, M is a real orthogonal matrix. Both the bµ and M 

change with each iteration. 

Let us consider, in a very unrealistic situation, how 

patterns can be imprinted unchanged into the SNN. 

This will only occur if we drop the B
−1

 term in (1). 

Suppose the SRN is frozen (artificially) at the same 

form on iteration after iteration. Then iterations of (1) 

converge to Equation 11: 
 

1 *1
j kB w ia w

a

− µ µ
µ

µ

= = η η∑  (11) 

 
where w

µ 
and η

µ
 are the eigensystem for w. This is 

analogous to the Hebbian rule (6) and demonstrates the 

imprinting of w, which is strong for small a. If that 

‘noise’ is now ‘turned-off’ then this imprinted pattern 

will decay, but do so slowly if a is small. Hence to 

maintain an unchanging imprinted pattern it needs to be 

continually refreshed via a fixed w. However the 

iterator with the B
−1

 term present has a significantly 

different and richer mode of behaviour as the system 

will now generate novel patterns, rather than simply 

imprinting whatever pattern is present in w. Indeed the 

system uses special patterns (the gebits) implicit in a 

random w that are used as a resource with which much 

more complex patterns are formed. 

The task is to determine the nature of the self-

generated patterns and to extract some effective 

descriptive syntax for that behaviour, remembering that 

the behaviour is expected to be quantum-like. 
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Emergent Geometry in Stochastic Networks: 

Gebits 

We start the iterations of (1) at B ≈ 0, representing 

the absence of information, that is, of patterns. With the 

noise absent the iterator behaves in a deterministic and 

reversible manner giving a condensate-like system with a 

B matrix of the form in (10) or (12), but with the matrix 

M iteration independent and determined uniquely by the 

start-up B and each bµ evolves according to the iterator 

( )1b b a b b−
µ µ µ µ→ − − , which converges to bµ = ±1. The 

corresponding eigenvectors ξµ
 do not correspond to any 

meaningful patterns as they are determined entirely by 

the random values from the startup B ≈ 0. However in 

the presence of the noise the iterator process is non-

reversible and non-deterministic and, most importantly, 

non-trivial in its pattern generation. The iterator is 

manifestly non-geometric and non-quantum in its 

structure and so does not assume any of the standard 

features of syntax based non-Process Physics models. 

Nevertheless, as we shall see, it generates geometric and 

quantum behaviour. The dominant mode is the formation 

of an apparently randomised background (in B) but, 

however, it also manifests a self-organising process 

which results in non-trivial patterns which have the form 

of a growing three-dimensional fractal process-space 

displaying quantum-foam behaviour. These patterns 

compete with this random background and represent the 

formation of a ‘universe’. 

The emergence of order in this system might appear 

to violate expectations regarding the 2nd Law of 

Thermodynamics; however because of the SRN the 

system behaves as an open system and the growth of 

order arises from the self referencing term, B
−1

 in (1), 

selecting certain implicit order in the SRN. Hence the 

SRN acts as a source of negentropy the term negentropy 

was introduced by Schrodinger (1944) and since then 

there has been ongoing discussion of its meaning. In 

Process Physics it manifests as the SRN. 

This growing three-dimensional fractal process-

space is an example of a Prigogine far-from-equilibrium 

dissipative structure driven by the SRN (Nicholis and 

Prigogine, 1997). From each iteration the noise term will 

additively introduce rare large value wij. These wij, 

which define sets of strongly linked nodes, will persist 

through more iterations than smaller valued wij and, as 

well, they become further linked by the iterator to form 

a three-dimensional process-space with embedded 

topological defects. In this way the stochastic neural 

network creates stable strange attractors and as well 

determines their interaction properties. This 

information is all internal to the system; it is the 

semantic information within the network. 

We introduce, for convenience only, some 

terminology: We think of Bij as indicating the 

connectivity or relational strength between two monads i 

and j. The monads concept was introduced by Leibniz, 

who espoused the relational mode of thinking in 

response to and in contrast with Newton’s absolute space 

however we see later that these two concepts are indeed 

compatible, but only by enlarging the meaning of 

‘absolute space’ Equation 12 and 13: 
 

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

.

.

cB

+ 
 − 
 +

=  
− 

 
  
 

 (12) 

 

1

2

3

1

2

g

g
B

g

c

c

 
 
 
 
 =
 
 
 
 
 

○

 (13) 

 
The monad i has a pattern of dominant (larger valued 

Bij) connections Bi1, Bi2, ..., where Bij = -Bji avoids self-

connection (Bii = 0) and real number valued. The self-

referential noise wij = -wji are independent random 

variables for each ij and for each iteration and with 

variance η. With the noise absent the iterator converges 

to one of the condensate MBcM
−1

 where the matrix M 

depends on the initial B. This behaviour is similar to the 

condensate of Cooper pairs in QFT, but here the 

condensate (indicating a non-zero dominant 

configuration) does not have any space-like structure. 

However in the presence of the noise, after an initial 

chaotic behaviour when starting the iterator from B ≈ 0, 

the dominant mode is the formation of a randomised 

condensate C ≈ µ  ⊗ Bc + Bb, up to an orthogonality 

transformation, indicating Bc but with the ±1’s replaced 

by ±µi’s (where the µi are small and given by a 

computable iteration-dependent probability distribution 

M(µ)) and with a noisy background Bb of very small Bij. 

The key discovery is that there is an extremely small 

self-organising process buried within this condensate and 

which has the form of a three-dimensional fractal 

process-space, which we now explain. Consider the 

connectivity from the point of view of one monad, call it 

monad i. Monad i is connected via these large Bij to a 

number of other monads and the whole set of connected 

monads forms a tree-graph relationship. This is because 

the large links are very improbable and a tree-graph 

relationship is much more probable than a similar graph 

involving the same monads but with additional links. 

The set of all large valued Bij then form treegraphs 
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disconnected from one-another; Fig. 2. In any one tree-

graph the natural ‘distance’ measure for any two monads 

within a graph is the smallest number of links connecting 

them. Let D1,D2, ..., DL be the number of nodes of distance 

1, 2, ...., L from monad i (define D0 = 1 for convenience), 

where L is the largest distance from i in a particular tree-

graph and let N be the total number of nodes in the tree. 

Then 
0

L

kk
D N

=
=∑ ; Fig. 2 for an example. 

Now consider the number N(D,N) of different 

random N-node trees, with the same distance distribution 

{Dk}, to which i can belong. By counting the different 

linkage patterns, together with permutations of the 

monads we obtain Equation 14: 

 

( ) ( )
( )

32

1 2 1

1 2

1 ! ...
,

2 ! ! !... !

LDD D

L

L

M D D D
N D N

M N D D D

−−
=

− −
 (14) 

 

Here
1

k

DkD
+

 is the number of different possible 

linkage patterns between level k and level k + 1 and (M-

1)!/(M-N-2)! Is the number of different possible choices 

for the monads, with i fixed. The denominator accounts 

for those permutations which have already been 

accounted for by the 
1

k

DkD
+

factors. We compute the most 

likely tree-graph structure by maximising ln 

( ) ( )0
,

L

kk
N D N D N

=
+ λ −∑ where λ is a Lagrange 

multiplier for the constraint. Using Stirling’s 

approximation for Dk! we obtain: 
 

1

1

1
ln

2

k
k k k

k

D
D D D

D
+

−

= − λ +  (15) 

 
We may compute the most likely tree-graph 

structure by maximising N(D,N) with respect to {Dk}. 

This equation has an approximate analytic solution 

(Nagels, 1985): 

 

( )22
sin /k

N
D k L

L
= π  

 

These results imply that the most likely tree-graph 

structure to which a monad can belong has a distance 

distribution {Dk} which indicates that the tree-graph is 

embeddable in a 3-dimensional hypersphere, S
3
. 

We call these tree-graph B-sets gebits (geometrical 

bits). However S
3
 embeddability of these gebits is a 

weaker result than demonstrating the necessary 

emergence of S
3
-spaces, since extra cross-linking 

connections would be required for this to produce a 

strong embed ability. 

The monads for which the Bij are, from the SRN 

term, large thus form disconnected gebits and in (13) we 

relabel the monads to bring these new gebits g1, g2, g3, .. 

to block diagonal form, with the remainder indicating the 

small and growing thermalised condensate, C = c1 ⊕ c2 

⊕ c3 ... In (13) the gi indicate unconnected gebits, while 

the icon ○  represents older and connected gebits and 

suggests a compact 3-space. The remaining very small 

Bmn, not shown in (13), are background noise only. 

A key dynamical feature is that most gebit matrices g 

have det(g) = 0, since most tree-graph connectivity 

matrices are degenerate. For example in the tree in Fig. 2 

the B matrix has a nullspace, spanned by eigenvectors 

with eigenvalue zero, of dimension two irrespective of 

the actual values of the non-zero Bij; for instance the 

right hand pair ending at the level D2 = 4 are identically 

connected and this causes two rows (and columns) to be 

identical up to a multiplicative factor. So the degeneracy 

of the gebit matrix is entirely structural. For this graph 

there is also a second set of three monads whose 

connectivities are linearly dependent. These det(g) = 0 

gebits form a reactive gebits subclass, i.e. in the presence 

of background noise (g1 ⊕ g2 ⊕ g3 ⊕ ..)
−1

 is well-defined 

and has some large elements. These reactive gebits are 

the building blocks of the dissipative structure. The self-

assembly process is as follows: Before the formation of 

the thermalised condensate B
−1

 generates new 

connections (large Bij) almost exclusively between gebits 

and the remaining non-gebit sub-block (having det ≈ 0 

but because here all the involved Bij ≈ 0), resulting in 

the decay, without gebit interconnection, of each gebit. 

However once the condensate has formed (essentially 

once the system has ‘cooled’ sufficiently) the 

condensate C = c1 ⊕ c2 ⊕ c3 ⊕ ... acts as a quasi-stable 

(i.e., det(C) = Πi det(ci) ≠ 0) sub-block of (13) and the 

sub-block of gebits may be inverted separately. The 

gebits are then interconnected (with many gebits 

present cross-links are more probable than self-links) 

via new links formed by B
−1

, resulting in the larger 

structure indicated by the ○ in (13). Essentially, in the 

presence of the condensate, the gebits are sticky. 

Now (14) is strictly valid in the limit of vanishingly 

small probabilities. For a more general analysis of the 

connectivity of such gebits assume for simplicity that the 

large wij arise with fixed but very small probability p, 

then the emergent geometry of the gebits is revealed by 

studying the probability distribution for the structure of 

the random graph units or gebits minimal spanning trees 

with Dk nodes at k links from node i (D0 ≡ 1), this is 

given more generally in the next section. 

Gebit Connectivity 

The probability that a connected random graph 

with N vertices has a depth structure D0, D1, ..., DL is 

given in (22) and leads to the concept of emergent 

geometry via the gebit concept. Equation 22 was first 

derived by Nagels (1985). 
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Fig. 2. An N = 8 spanning tree for a random graph (not 

shown) with L = 3. The distance distribution Dk is 

indicated for node i 
 

Consider a set of M nodes with pairwise links arising 

with probability p << 1. The probability of nonlinking is 

then q = 1-p. We shall term linked nodes as being 

‘adjacent’, though the use of this geometric language is 

to be justified and its limitations determined. The set M 

will be partitioned into finite subsets of mutually 

disconnected components, each having Ni nodes which 

are at least simply connected-that is, each Ni may be 

described by a non-directed graph. 

Consider one of these components, with N = Ni >> 1 

and choose one vertex to be the ‘origin’. We will 

determine the probable distribution of vertices in this 

component as measured by the depth structure of a 

minimal spanning tree. Figure 2 for the definition of 

depth structure. Let Dk be the number of vertices at a 

distance k from the origin then D0 = 1 is the origin, D1 is 

the number of adjacent vertices or nearest neighbours to 

the origin and D2 is the number of next nearest 

neighbours and so on. Then, since N is finite, there is a 

maximum distance L on the graph and DL is the number 

of vertices at this maximum distance from the origin. 

There is then the constraint Equation 16 and 17: 
 

0

L

k

k

D N
=

=∑  (16) 

 
And also: 

 

0
1

0, 0 ,

0,

k

k

D

D k L

D k L

 =


> ≤ ≤
 = >

 (17) 

 
To calculate the probability for the distribution: 

 
1

0

: 0 ,
N

k k

k

D k N D N
−

=

 
≤ ≤ = 

 
∑  

 
We require: 

 

The probability for the number D1 of nearest 

neighbours (i.e., those vertices at unit distance from the 

origin) is 1D
p , which may be written as 

( ) ( )0

1
1 01 1

D
D D

q q− = − , since D0 = 1 

The probability for the next nearest neighbours, D2, is 

obtained by considering that any vertex at this level is: 

• Adjacent to at least one point at unit distance from 

the origin 

• Not adjacent to the origin itself 

Condition (b) is easily obtained since it occurs with 

probability q = 1-p so there is a factor of 2D
q for this. 

Condition (a) may be obtained by first considering the 

counter argument i.e., that the vertex is not adjacent to any 

of the D1. This has probability 1D
q . Thus the probability that 

it is adjacent to at least one of the D1 is just 11 Dq− . So 

there is an overall factor of ( ) 2
11

D
D

q−  for this condition. 

Hence, the probability of obtaining D2 is the product 

of these two factors i.e., Equation 18: 

 

( ) ( )2

2
1 21

D
D D

prob D q q= −  (18) 

 

The probability for D3, those vertices at distance k = 

3 from the origin, is similarly defined by the 

requirements that a vertex in D3 is: 

 

• Adjacent to least one vertex in D2 

• Not adjacent to any vertex in D1 

• Not adjacent to the origin 

 

Condition (a) is argued precisely as the 

corresponding condition in item 2 above, i.e., it provides 

a factor ( ) 3
21

D
D

q− . 

Condition (b) is expressed as 1D
q , thus providing the 

factor ( ) 3
1

D
D

q . 

Conditioned (c) is satisfied simply by the factor 3D
q , 

which may be written as ( ) 3
0

D
D

q  since D0 ≡ 1. Hence the 

probability of obtaining D3 is Equation 19: 

 

( ) ( ) ( ) ( ) ( )3 3 3 3
0 0 11 2

3
21 1

D D D D
D D DD D

D
D

q q q q q+− = −  (19) 

 

For vertices at a distance i+1 from the origin, 

induction on the previous results gives Equation 20: 

 

( ) ( ) ( )1 11

1 0
1

i i
i

D Di D

i q jj
prob D D q

+ +−

+ =
= −∑  (20) 
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So the probability P for the depth distribution is 

the probability of obtaining a particular set (D1,⋅⋅⋅, DL) 

which is Equation 21: 

 

( ) ( )1 1
1

1
1

0
1

1
i i

i

L D Di DD

q jj
i

P p D q
+ +

−
−

=
=

= −∑∏  (21) 

 

Note that vertices may be permuted between the sets 

of vertices at different distances. That is, the same 

magnitudes for each Dk could be obtained by many other 

possible configurations which result from a relabelling 

of the graph. First, there are (N-1)! ways of relabelling 

the graph once the choice of origin has been fixed so 

there are (N-1)! Ways of obtaining the same P, where the 

depth structure given by (D1, D2, ⋅⋅⋅, DL) is identical. 

Second, the number of instances of a particular shape 

irrespective of labelling (beyond the choice of origin) is 

given by the product D1!D2!⋅⋅⋅ DL!. 

Hence there are 
( )

1 2

| 1 !

! ! !
L

N

D D D

−

⋯
 ways of obtaining a 

graph (from a fixed origin) with a particular depth 

structure and therefore, the probability for a specified 

shape with N given and the origin arbitrarily chosen, that 

is, the probability distribution, is: 

 

( ) ( ) ( )1 1
1

1
1

0
11 2

1 !
. 1

! !... !

i i
i

L D Di DD

q jj
iL

N
P p D q

D D D

+ +
−

−

=
=

−
= −∑∏  (22) 

where q = 1-p, N is the total number of nodes in the 

gebit and L is the maximum depth from node i. In the 

limit p → 0 (22) reduces to (14), proportionally. To 

find the most likely connection pattern we 

numerically maximise P[D, L, N] for fixed N with 

respect to L and the Dk. The resulting L and {D1,D2, 

..., DL} fit very closely to the form: 
 

( )1sin /d

kD k L−∝ π  

 
Figure 3a, for N = 5000 and Log10p = -6. The 

resultant d values for a range of Log10p and with N = 

5000 are shown in Fig. 3b. 
This shows, for p below a critical value, that d = 3, 

indicating that the connected nodes have a natural 
embedding in a 3D hypersphere S

3
, call this a base gebit. 

Above that value of p, the increasing value of d indicates 
the presence of extra links that, while some conform with 
the embeddability, others are in the main defects with 
respect to the geometry of the S

3
. These extra links act as 

topological defects. By themselves these extra links will 
have the connectivity and embedding geometry of 
numbers of gebits, but these gebits have a ‘fuzzy’ 
embedding in the base gebit. This is an indication of fuzzy 
homotopies (a homotopy is, put simply, an embedding of 
one space into another). Here we see the emergence of 
geometry, not only of space but also of the internal flavour 
symmetry spaces of quantum fields. The nature of the 
resulting 3D process-space is suggestively indicated in 
Fig. 3c and behaves essentially as a quantum foam. 

 

       
 (a) (b) (c) 

 
Fig. 3. Top: Points show the Dk set and L = 40 value found by numerically maximising P[D, L, N] for Log10p = -6 for fixed N = 

5000. Curve shows 1sind

k

k
D

L

− π ∝  
 

 with best fit d = 3.16 and L = 40, showing excellent agreement and indicating 

embeddability in an S3 with some topological defects. Middle: Dimen d of the gebits as a function of the probability p. 

Bottom: Graphical depiction of the ‘process space’ at one stage of the iterative process-time showing a quantum-foam 

structure formed from embeddings and links. The linkage connections have the distribution of a 3D space, but the individual 

gebit components are closed compact spaces and cannot be embedded in a 3D background space. So the drawing is only 

suggestive. Nevertheless this figure indicates that Process Physics generates a cellular information system, where the 

behaviour is determined at all levels by internal information 
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Over ongoing iterations the existing gebits become 

crosslinked and eventually lose their ability to 

undergo further linking; they lose their ‘stickiness’ 

and decay. The value of the parameter a in (1) must be 

small enough that the ‘stickiness’ persists over many 

iterations, that is, it is not quenched too quickly, 

otherwise the emergent network will not grow. Hence 

the emergent space is 3D but is continually 

undergoing replacement of its component gebits; it is 

an informational process-space, in sharp distinction to 

the non-process continuum geometrical spaces that 

have played a dominant role in modelling physical 

space. If the noise is ‘turned off’ then this emergent 

dissipative space will decay and cease to exist. We 

thus see that the nature of space is deeply related to, 

as implemented here, a self-referentially limited 

neural network. 

Gebits as Skyrmions 

We need to extract convenient but approximate 

syntactical descriptions of the semantic information in 

the network and these will have the form of a 

sequence of mathematical constructions, the first 

being the Quantum Homotopic Field Theory. 

Importantly they must all retain explicit 

manifestations of the SRN. To this end first consider 

the special case of the iterator when the SRN is frozen 

at a particular w, that is we consider iterations with an 

artificially fixed SRN term. Then it may be shown that 

the iterator is equivalent to the minimisation of an 

‘energy’ expression (remember that B and w are 

antisymmetric) Equation 23: 

 

[ ] [ ] [ ]2;
2

a
E B w Tr B aTrLn B Tr wB = − − +   (23) 

 

Note that for disconnected gebits g1 and g2 this 

energy is additive, E[g1 ⊕ g2] = E[g1] + E[g2]. Now 

suppose the fixed w has the form of a gebit 

approximating an S
3
 network with one embedded 

topological defect which is itself an S
3
 network, for 

simplicity. So we are dissecting the gebit into base gebit, 

defect gebit and linkings or embeddings between the 

two. We also ignore the rest of the network, which is 

permissible if our gebit is disconnected from it. Now if 

det(w) is not small, then this gebit is non-sticky and for 

small a, the iterator converges to 
1

B w
a

≈ , namely an 

enhancement only of the gebit. However because the 

gebits are rare constructs they tend to be composed of 

larger wij forming tree structures, linked by smaller 

valued wij. The tree components make det(w) smaller 

and then the inverse B
−1

 is activated and generates new 

links. Hence, in particular, the topological defect 

relaxes, according to the ‘energy’ measure, with respect 

to the base gebit. This relaxation is an example of a 

‘non-linear elastic’ process (Ogden, 1984). The above 

gebit has the form of a mapping π: S →Σ from a base 

space to a target space. Manton and Ruback (1985; 

Manton, 1987) has constructed the continuum form for 

the ‘elastic energy’ of such an embedding and for π: S
3
 

→ S
3
 it is the Skyrme energy Equation 24: 

 

[ ]
( )1 1

2
1 1

1

2

1
,

16

i i

i i

Tr UU UU

E U

Tr UU UU

− −

− −

 − ∂ ∂ 
=  

  − ∂ ∂   

∫  (24) 

 

where, U(x) is an element of SU(2). Via the 

parametrisation ( ) ( ) ( ).U x x i x= σ + π τ
� �

, where the τi are 

Pauli matrices, we have ( ) ( )2 2
1x xσ + π =

�
, which 

parametrises an S
3
 as a unit hypersphere embedded in 

E
4
 (which has no ontological significance, of course). 

Non-trivial minima of E[U] are known as Skyrmions 

(a form of topological soliton) and have Z = ±1, ±2, 

..., where Z is the winding number of the map 

Equation 25: 

 

( )1 1 1

2

1

24
ijk i j kZ Tr UU UU UU− − −= ∈ ∂ ∂ ∂

π ∑∫  (25) 

 

The first key to extracting emergent phenomena from 

the stochastic neural network is the validity of this 

continuum analogue, namely that E[B;w] and E[U] are 

describing essentially the same ‘energy’ reduction 

process. This requires detailed analysis. 

Absence of a Cosmic Code 

This ‘frozen’ SRN analysis of course does not 

match the time-evolution of the full iterator (1), for 

this displays a much richer collection of processes. 

With ongoing new noise in each iteration and the 

saturation of the linkage possibilities of the gebits 

emerging from this noise, there arises a process of 

ongoing birth, linking and then decay of most 

patterns. The task is then to identify those particular 

patterns that survive this flux, even though all 

components of these patterns eventually disappear and 

to attempt a description of their modes of behaviour. 

This brings out the very biological nature of the 

information processing in the SNN and which appears 

to be characteristic of a ‘pure’ semantic information 

system. Kitto (2002) has further investigated the 

analogies between Process Physics and living 

systems. The emergent ‘laws of physics’ are the 

habitual habits of this system and it appears that they 

may be identified. However there is no encoding 
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mechanism for these ‘laws’, they are continually 

manifested; there is no cosmic code. In contrast living 

or biological systems could be defined as those 

emergent patterns which discovered how to encode 

their ‘laws’ in a syntactical genetic code. Nevertheless 

such biological systems make extensive use of 

semantic information at all levels as their genetic code 

is expressed in the phenotype. 

Entrapped Topological Defects 

In general each gebit, as it emerges from the SRN, 

has active nodes and embedded topological defects, 

again with active nodes. Further there will be defects 

embedded in the defects and so on and so gebits begin to 

have the appearance of a fractal defect structure and with 

all the defects having various classifications and 

associated winding numbers. The energy analogy above 

suggests that defects with opposite winding numbers at 

the same fractal depth may annihilate by drifting 

together and merging. Furthermore the embedding of the 

defects is unlikely to be ‘classical’, in the sense of being 

described by a mapping π(x), but rather would be fuzzy, 

i.e., described by some functional, F[π], which would 

correspond to a classical embedding only if F has a very 

sharp supremum at one particular π = πcl. As well these 

gebits are undergoing linking because their active nodes 

(Cahill and Klinger, 2000) activate the B
−1

 new-links 

process between them and so by analogy the gebits 

themselves form larger structures with embedded fuzzy 

topological defects. This emergent behaviour is 

suggestive of a quantum space foam, but one containing 

topological defects which will be preserved by the 

system, unless annihilation events occur. If these 

topological defects are sufficiently rich in fractal 

structure so as to be preserved, then their initial 

formation would have occurred as the process-space 

relaxed out of its initial essentially random form. This 

phase would correspond to the early stages of the Big-

Bang. Once the topological defects are trapped in the 

process-space they are doomed to meander through that 

space by essentially self-replicating, i.e. continually 

having their components die away and be replaced by 

similar components. These residual topological defects 

are what we call matter. The behaviour of both the 

process-space and its defects is clearly determined by 

the same network processes; we have an essential 

unification of space and matter phenomena. This 

emergent quantum foam-like behaviour suggests that 

the full generic description of the network behaviour is 

via the Quantum Homotopic Field Theory (QHFT). We 

also see that cellular structures are a general feature of 

semantic information systems, with the information 

necessarily distributed. 

Functional Schrodinger Equation 

Because of the iterator the resource is the large 

valued Bij from the SRN because they form the 

‘sticky’ gebits which are self-assembled into the non-

flat compact 3D process-space. The accompanying 

topological defects within these gebits and also the 

topological defects within the process space require a 

more subtle description. The key behavioural mode 

for those defects which are sufficiently large (with 

respect to the number of component gebits) is that 

their existence, as identified by their topological 

properties, will survive the ongoing process of 

mutation, decay and regeneration; they are 

topologically self-replicating. Consider the analogy of 

a closed loop of string containing a knot-if, as the 

string ages, we replace small sections of the string by 

new pieces then eventually all of the string will be 

replaced, however the relational information 

represented by the knot will remain unaffected as only 

the topology of the knot is preserved. In the process-

space there will be gebits embedded in gebits and so 

forth, in topologically non-trivial ways; the topology 

of these embeddings is all that will be self-replicated 

in the processing of the dissipative structure. 

To analyse and model the ‘life’ of these topological 

defects we need to characterise their general behaviour: 

If sufficiently large (i) they will self-replicate if 

topological nontrivial, (ii) we may apply continuum 

homotopy theory to tells us which embeddings are 

topologically non-trivial, (iii) defects will only dissipate 

if embeddings of ‘opposite winding number’ (these 

classify the topology of the embedding) engage one 

another, (iv) the embeddings will be in general fractal 

and (iv) the embeddings need not be ‘classical’, i.e., the 

embeddings will be fuzzy. To track the coarse-grained 

behaviour of such a system led to the development of a 

new form of quantum field theory: Quantum Homotopic 

Field Theory (QHFT). This models both the process-

space and the topological defects. 

To construct this QHFT we introduce an appropriate 

configuration space, namely all the possible homotopic 

mappings παβ: Sβ → Sα, where the S1, S2, .., describing 

‘clean’ or topological-defect free gebits, are compact 

spaces of various types. Then QHFT has the form of an 

iterative functional Schrodinger equation for the discrete 

time-evolution of a wave-functional Ψ[...., παβ, ....;t]: 

 

...., ,....; ...., ,....;

...., ,....;

t t t

iH t t QSD terms

αβ αβ

αβ

   Ψ π + ∆ = Ψ π   

 − Ψ π ∆ + 
 (26) 

 

This form arises as it is models the preservation of 

semantic information, by means of a unitary time 
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evolution; even in the presence of the noise in the 

Quantum State Diffusion (QSD, Percival, 1998) 

terms. Because of the QSD noise (26) is an 

irreversible quantum system. The time step ∆t in (26) 

is relative to the scale of the fractal processes being 

explicitly described, as we are using a configuration 

space of mappings between prescribed gebits. At 

smaller scales we would need a smaller value for ∆t. 

Clearly this invokes a (finite) renormalisation scheme. 

We now discuss the form of the hamiltonian and the 

QSD terms. 

First (26), without the QSD term, has a form 

analogous to a ‘third quantised’ system, in 

conventional terminology (Coleman et al., 1981). 

These systems were considered as perhaps capable of 

generating a quantum theory of gravity. The argument 

here is that this is the emergent behaviour of the SNN 

and it does indeed lead to quantum gravity, but with 

quantum matter as well. More importantly we 

understand the origin of (26) and it will lead to 

quantum and then classical gravity, rather than arise 

from classical gravity via some ad hoc or heuristic 

quantisation procedure. 

Depending on the ‘peaks’ of Ψ and the 

connectivity of the resultant dominant mappings such 

mappings are to be interpreted as either embeddings 

or links; Fig. 4 then suggests the dominant process-

space form within Ψ showing both links and 

embeddings. The emergent process-space then has the 

characteristics of a quantum foam. Note that, as 

indicated in Fig. 4, the original start-up links and 

nodes are now absent. Contrary to the suggestion in 

Fig. 4, this process space cannot be embedded in a 

finite dimensional geometric space with the emergent 

metric preserved, as it is composed of nested 

finitedimensional closed spaces. 

 

 
 

Fig. 4. An representation of the functional Ψ [{π}; t] showing 

dominant homotopies. The ‘magnifying glass’ indicates 

that these mappings can be nested, i.e., fractal 

Homotopy Hamiltonian 

We now consider the form of the hamiltonian H. In 

the previous sections it was suggested that Manton’s 

non-linear elasticity interpretation of the Skyrme energy 

is appropriate to the SNN. This then suggests that H is 

the functional operator: 

 

,H h αβ
α≠β αβ

 δ
= π 

δπ  
∑  (27) 

 

where, ,h
δ π δπ 

 is the (quantum) Skyrme Hamiltonian 

functional operator for the system based on making 

fuzzy the mappings π: S → Σ, by having h act on wave-

functionals of the form Ψ [π(x); t]. Then H is the sum of 

pairwise embedding or homotopy hamiltonians. The 

corresponding functional Schrodinger equation would 

simply describe the time evolution of quantised 

Skyrmions with the base space fixed and Σ ∈ SU(2). 

There have been very few analyses of this class of 

problem and then the base space is usually taken to be 

E
3
. We shall not give the explicit form of h as it is 

complicated, but wait to present the associated action. 

In the absence of the QSD terms the time evolution in 

(26) can be formally written as a functional integral 

Equation 28: 

 

Ψ π{ };t '  = D ɶπ
αβ

α≠β
∏∫ e

iS ɶπ{ } Ψ π{ };t   (28) 

 

where, using the continuum t limit notation, the action is 

a sum of pairwise actions Equation 29: 

 

S ɶπ{ }  = S
αβ

α≠β
∑ ɶπ

αβ
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And the now time-dependent (indicated by the tilde 

symbol) mappings πɶ  are parametrised by ɶU x,t( ), ɶU ∈S
α
. 

The metric gµv is that of the n-dimensional base space, 

Sβ, in πα,β: Sβ → Sα. As usual in the functional integral 

formalism the functional derivatives in the quantum 

hamiltonian, in (27), now manifest as the time 

components ∂0 in the above equation, so now this has the 

form of a ‘classical’ action and we see the emergence of 

‘classical’ fields, though the emergence of ‘classical’ 

behaviour is a more complex process. Equation 26 or 

(28) describe an infinite set of quantum skyrme systems, 
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coupled in a pairwise manner. Note that each homotopic 

mapping appears in both orders; namely παβ  and πβα. 

Quantum State Diffusion 

The Quantum State Diffusion (QSD) (Percival, 1998) 

terms are non-linear and stochastic Equation 30: 

 

( )

† † †1

2
j j j j j j

j

j j j

j

QSD L L L L L L t

L L

 
= < > − − < >< > Ψ∆ 

 

+ − < > Ψ∆ξ

∑

∑
 (30) 

 
Which involves summation over the class of Linblad 

functional operators Lj. The QSD terms are up to 5th 

order in Ψ, as in general Equation 31: 
 

{ } { }; * ;tA D t A tαβ
α≠β

< > ≡ π Ψ  π  Ψ  π    ∏∫  (31) 

 

And where ∆ξj are complex statistical variables with 

means M(∆ξj) = 0, M(∆ξj∆ξj’) = 0 and 

( ) ( )*

' 'j jM j j t∆ξ ∆ξ = δ − ∆ . The remarkable property of 

this QSD term is that the unitarity of the time evolution 

in (26) is maintained in the mean. 

Emergent Classicality 

These QSD terms are ultimately responsible for the 

emergence of classicality via an objectification 

(Percival 1998), but in particular they produce wave-

function(al) collapses during quantum measurements, 

as the QSD terms tend to ‘sharpen’ the fuzzy 

homotopies towards classical or sharp homotopies. So 

the QSD terms, as residual SRN effects, lead to the 

Born quantum measurement random behaviour, but 

here arising from the Process Physics and not being 

invoked as a metarule. Keeping the QSD terms leads to 

a functional integral representation for a density matrix 

formalism in place of (28) and this amounts to a 

derivation of the decoherence formalism which is 

usually arrived at by invoking the Born measurement 

metarule. Here we see that decoherence arises from the 

limitations on self-referencing. 

In the above we have a deterministic and unitary 

evolution, tracking and preserving topologically encoded 

information, together with the stochastic QSD terms, 

whose form protects that information during localisation 

events and which also ensures the full matching in 

QHFT of process-time to real time: An ordering of 

events, an intrinsic direction or ‘arrow’ of time and a 

modelling of the contingent present moment effect. So 

we see that Process Physics generates a complete theory 

of quantum measurements involving the nonlocal, non-

linear and stochastic QSD terms. It does this because it 

generates both the ‘objectification’ process associated 

with the classical apparatus and the actual process of 

(partial) wavefunctional collapse as the quantum modes 

interact with the measuring apparatus. Indeed many of 

the mysteries of quantum measurement are resolved 

when it is realised that it is the measuring apparatus itself 

that actively provokes the collapse and it does so because 

the QSD process is most active when the system deviates 

strongly from its dominant mode, namely the ongoing 

relaxation of the system to a 3D process-space and 

matter survives only because of its topological form. 

This collapse amounts to an ongoing sharpening of the 

homotopic mappings towards a ‘classical’ 3D 

configuration-resulting in essentially the process we 

have long recognised as ‘space’. Being non-local the 

collapse process does not involve any propagation 

effects, that is the collapse does not require any effect to 

propagate through the space. For that reason the self-

generation of space is in some sense action-at-a-distance 

and the emergence of such a quantum process underlying 

reality is, of course, contrary to the long-held belief by 

physicists that such action is unacceptable, though that 

belief arose before the quantum collapse was 

experimentally shown to display action at a distance in the 

Aspect experiment. Hence we begin to appreciate why the 

new theory of gravity does not involve the maximum 

speed c of propagation through space and why it does not 

predict the GR gravitational waves travelling at speed c, of 

the kind long searched for but not detected. 

The mappings παβ are related to group manifold 

parameter spaces with the group determined by the 

dynamical stability of the mappings. This symmetry 

leads to the flavour symmetry of the standard model of 

‘particle’ physics. Quantum homotopic mappings or 

skyrmions behave as fermionic or bosonic modes for 

appropriate winding numbers; so Process Physics 

predicts both fermionic and bosonic quantum modes, but 

with these associated with topologically encoded 

information and not with objects or ‘particles’. 

Emergent Quantum Field Theory 

The QHFT is a very complex ‘book-keeping’ system 

for the emergent properties of the neural network and we 

now sketch how we may extract a more familiar 

Quantum Field Theory (QFT) that relates to the standard 

model of ‘particle’ physics. An effective QFT should 

reproduce the emergence of the process-space part of the 

quantum foam, particularly its 3D aspects. The QSD 

processes play a key role in this as they tend to enhance 

classicality. Hence at an appropriate scale QHFT should 

approximate to a more conventional QFT, namely the 

emergence of a wave-functional system Ψ[U(x); t] where 

the configuration space is that of homotopies from a 3-

space to U(x) ∈ G, where G is some group manifold 
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space. This G describes ‘flavour’ degrees of freedom. So 

we are coarsegraining out the gebit structure of the 

quantum-foam. Hence the Schrodinger wavefunctional 

equation for this QFT will have the form Equation 32: 

 

[ ] [ ] [ ]; ; ;U t t U t iH U t t QSDtermsΨ + ∆ = Ψ − Ψ ∆ +  (32) 

 

where, the general form of H is known and where a new 

residual manifestation of the SRN appears as the new 

QSD terms. This system describes skyrmions embedded 

in a continuum space. It is significant that such 

Skyrmions are only stable, at least in flat space and for 

static skyrmions, if that space is 3D. This tends to 

confirm the observation that 3D space is special for the 

neural network process system. 

Emergent Flavour and Colour 

Again, in the absence of the QSD terms, we may 

express (32) in terms of the functional integral Equation 33: 

 

Ψ U ;t '  = D∫ ɶUe
iS ɶU Ψ U ;t   (33) 

 

To gain some insight into the phenomena present in 

(32) or (33), it is convenient to use the fact that functional 

integrals of this Skyrmionic form may be written in terms 

of Grassmann-variable functional integrals, but only by 

introducing a fictitious ‘metacolour’ degree of freedom 

and associated coloured fictitious vector bosons. This is 

essentially the reverse of the Functional Integral 

Calculus (FIC) hadronisation technique in the Global 

Colour Model (GCM) of QCD. The action for the 

Grassmann and vector boson part of the system is of the 

form (written for flat space) Equation 34: 

 

( ) ( )

4 2
, ,

1

4

a
a

a a v

v

p i g A p

S p p A d x

F A F A

µ
µ µ

α
µ

µ
µ

  λ
γ ∂ + −  

    =   
 
 

∫  (34) 

 

where, the Grassmann variables pfc(x) and ( )fcp x have 

flavour and metacolour labels. The Skyrmions are then 

re-constructed, in this system, as topological solitons. 

These coloured and flavoured but fictitious fermionic 

fields p and p correspond to a preon system. As they are 

purely fictitious, in the sense that there are no excitations 

in the system corresponding to them, the metacolour 

degree of freedom must be hidden or confined. We thus 

arrive at the general feature of the standard model of 

particles with flavour and confined colour degrees of 

freedom. Then while the QHFT and the QFT represent 

an induced syntax for the semantic information, the 

preons may be considered as an induced ‘alphabet’ for 

that syntax. The advantage of introducing this preon 

alphabet is that we can more easily determine the states 

of the system by using the more familiar language of 

fermions and bosons, rather than working with the 

skyrmionic system, so long as only colour singlet states 

are finally permitted. In order to establish fermionic 

behaviour a Wess-Zumino (WZ) process must be 

extracted from the iterator behaviour or the QHFT. Such 

a WZ process is time-dependent and so cannot arise from 

the frozen SRN. It is important to note that (34) and the 

action in (33) are certainly not the final forms. Further 

analysis will be required to fully extract the induced 

actions for the emergent QFT. 

Hilbert Spaces 

Process Physics has suggested the origin of quantum 
phenomena and of its Hilbert-space formalism. This 
phenomena is associated with the time evolution of the 
conserved topological defects embedded in the process 
space. However that embedding need not be local, as 
illustrated in Fig. 5. This particular situation corresponds 
to the Hilbert space ‘sum’: 
 

( ) ( ) ( )1 2x x xψ = ψ + ψ  (35) 

 

where, ψ1(x) and ψ2(x) are non-zero only in the 

respective embedding regions. This is how quantum non-

locality manifests in conventional quantum theory. So 

the Hilbert space ‘sum’ is the representation of the 

connectivity shown in Fig. 5. Such a non-local 

embedding is also responsible for the phenomenon of 

quantum entanglement. 

Quantum Matter and Dynamical Space 

The dynamics and detection of space is a 

phenomenon that physics missed from its beginning, 

with space modelled as a geometric entity without 

structure or time dependence. That has changed recently 

with the determination of the speed and direction of the 

solar system through the dynamical space and the 

characterisation of the flow turbulence: Gravitational 

waves. Detections used various techniques and have all 

produced the same speed and direction (Cahill 2005b; 

2006a; 2006a; 2006b; 2006c; 2007; 2008; 2009a; 2009b; 

2011; 2012; 2013a; 2013b; 2013d; 2014b; Cahill et al., 

2000). The detected dynamical space was missing from 

all conventional theories in physics: Gravity, 

Electromagnetism, Atomic, Nuclear, Climate,... The 

detection of the dynamical space has led to a major new 

and extensively tested theory of reality. 

Above we presented a “bottom up” theory. Here we 

present a “top down” theory that follows from a minimal 

extension of the quantum theory and the gravity theory 

by introducing the detected dynamical space. 



Reginald Thomas Cahill / Physics International 2015, 6 (2): 51.67 

DOI: 10.3844/pisp.2015.51.67 

 

64 

 
 
Fig. 5. The is a representation of the origin of quantum 

nonlocality. An entity is attached at two disjoint 

regions of the [3]-space with the gebit structure of 

that space not shown 
 

The Schrodingier equation extension to include the 

dynamical space is, Cahill (2006c) Equation 36: 

 

iℏ
∂ψ r,t( )

∂t
= −
ℏ

2

2m
∇2ψ r,t( ) +V r,t( )ψ r,t( )

−iℏ v r,t( ).∇ +
1

2
∇.v r,t( )





ψ r,t( )

 (36) 

 

Here v(r, t) is the velocity field describing the 

dynamical space at a classical field level and the 

coordinates r give the relative location of (r, t) and v(r, 

t), relative to a Euclidean embedding space and also used 

by an observer to locate structures. At sufficiently small 

distance scales that embedding and the velocity 

description is conjectured to be not possible, as then the 

dynamical space requires an indeterminate dimension 

embedding space, being possibly a quantum foam, as 

noted above. This minimal generalisation of the original 

Schrodingier equation arises from the replacement ∂/∂t 

→ ∂/∂t + v.∇, which ensures that the quantum system 

properties are determined by the dynamical space and 

not by the embedding coordinate system. The same 

replacement is also to be implemented in the original 

Maxwell equations, yielding that the speed of light is 

constant only wrt the local dynamical space, as observed 

and which results in lensing from stars and black holes. 

The extra ∇.v term in (36) is required to make the 

hamiltonian in (36) hermitian. Essentially the existence 

of the dynamical space in all theories has been missing. 

The dynamical theory of space itself is briefly reviewed 

below. The dynamical space velocity has been detected 

with numerous techniques, dating back to the 1st 

detection, the Michelson and Morley (1887), which was 

misunderstood and which lead to physics developing 

flawed theories of the various phenomena noted above. 

A particularly good technique used the NASA Doppler 

shifts from spacecraft Earth-flybys, Cahill (2009b), to 

determine the anisotropy of the speed of EM waves. All 

successful detection techniques have observed significant 

fluctuations in speed and direction: These are the actually 

“gravitational waves”, because they are associated with 

gravitational and other effects. In particular we report here 

the role of these waves in solar flare excitations and Earth 

climate science (Cahill, 2014b). 

A significant effect follows from (36), namely the 

emergence of gravity as a quantum effect: A wave packet 

analysis shows that the acceleration of a wave packet, due 

to the space terms alone (when V (r, t) = 0), given by g = 

d
2
<r>/dt

2
, (Cahill, 2006c), gives Equation 37: 

 

( ) ( ), .
v

g r t v v
t

∂
= + ∇

∂
 (37) 

 
That derivation showed that the acceleration is 

independent of the mass m: whence we have the 1st 
derivation of the Weak Equivalence Principle, 
discovered experimentally by Galileo. As noted below 
the dynamical theory for v(r, t) has explained numerous 
gravitational phenomena. 

The experimental data reveals the existence of a 

dynamical space. It is a simple matter to arrive at the 

dynamical theory of space and the emergence of gravity 

as a quantum matter effect, as noted above. The key 

insight is to note that the emergent quantum-theoretic 

matter acceleration in (37), ∂v = ∂t + (v.∇)v, is also an 

independently, the constituent Euler acceleration a(r, t) 

of the space flow velocity field Equation 38: 

 

( )
( )( ) ( )

( )

0

, , ,
, lim

.

t

v r v r t t t t v r t
a r t

t

v
v v

t

∆ →

+ ∆ + ∆ −
=

∆
∂

= + ∆
∂

 (38) 

 
Which describes the acceleration of a constituent 

element of space by tracking its change in velocity. This 

means that space has a structure that permits its velocity to 

be defined and detected, which experimentally has been 

done. This then suggests, from (37) and (38), that the 

simplest dynamical equation for v(r, t) is Equation 39: 
 

( ) ( ). . 4 , ; 0
v

v v G r t v
t

∂ ∆ + ∇ = − π ρ ∇ × = ∂ 
 (39) 

 

Because it then gives ∇.g = -4πGρ(r, t), ∇×g = 0, 

which is Newton’s inverse square law of gravity in 

differential form. 

Hence the fundamental insight is that Newton’s 

gravitational acceleration field g(r, t) for matter is really 

the acceleration field a(r, t) of the structured dynamical 

space and that quantum matter acquires that acceleration 

because it is fundamentally a wave effect and the wave is 

refracted by the accelerations of space. 

While the above leads to the simplest 3-space 

dynamical equation this derivation is not complete yet. 

One can add additional terms with the same order in 

speed spatial derivatives and which cannot be a priori 

neglected. There are two such terms, as in: 
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( ) ( ) ( )( )2 25
. . ... 4

4

v
v v trD tr D G

t

∂ α ∆ + ∇ + − + = − π ρ ∂ 
 

 

where Dij = ∂vi = ∂xj. However to preserve the inverse 

square law external to a sphere of matter the two terms 

must have coefficients α and -α, as shown. Here α is a 

dimensionless space self-interaction coupling constant, 

which experimental data reveals to be, approximately, 

the fine structure constant, α = e
2 

/ħc. The ellipsis 

denotes higher order derivative terms with dimensioned 

coupling constants, which come into play when the flow 

speed changes rapidly wrt distance. The observed 

dynamics of stars and gas clouds near the centre of the 

Milky Way galaxy has revealed the need for such a term 

(Cahill and Kerrigan, 2011) and we find that the space 

dynamics then requires an extra term: 

 

( ) ( ) ( )( )
( )( )

2 2

22 2

5
. .

4

... 4

v
v v trD tr D

t

trD G

∂ α 
∇ + ∇ + − ∂ 

+δ ∇ + = − π ρ

 (40) 

 

where, δ has the dimensions of length and appears to be 

a very small Planck-like length. This then gives us the 

dynamical theory of 3-space. It can be thought of as 

arising via a derivative expansion from a deeper theory, 

such as a quantum foam theory, above. Note that the 

equation does not involve c, is non-linear and time-

dependent and involves non-local direct interactions. Its 

success implies that the universe is more connected than 

previously thought. Even in the absence of matter there 

can be time-dependent flows of space. 

Note that the dynamical space equation, apart from 

the short distance effect-the δ term, there is no scale 

factor and hence a scale free structure to space is to be 

expected, namely a fractal space. That dynamical 

equation has back hole and cosmic filament solutions 

(Cahill and Kerrigan, 2011; Rothall and Cahill, 2013), 

which are non-singular because of the effect of the δ 

term. At large distance scales it appears that a 

homogeneous space is dynamically unstable and 

undergoes dynamical breakdown of symmetry to form 

a spatial network of black holes and filaments, 

(Rothall and Cahill, 2013), to which matter is attracted 

and coalesces into gas clouds, stars and galaxies. 

The dynamical space Equation 40 explains 

phenomena such as Earth bore-hole gravity anomalies, 

from which the value of α was extracted, flat rotation 

curves for spiral galaxies, galactic black holes and 

cosmic filaments, the universe growing/expanding at 

almost a constant rate, weak and strong gravitational 

lensing of light,.... A significant aspect of the space 

dynamics is that space is not conserved: It is continually 

growing, giving the observed universe expansion and is 

dissipated by matter. As well it has no energy density 

measure. Nevertheless it can generate energy into matter. 

Detecting Dynamical Space Speed and 

Turbulence with Diodes 

The Zener diode in reverse bias mode can easily and 
reliably measure the space speed fluctuations, Fig. 7 and 
two such detectors can measure the speed and direction 
of the space flow and waves, (Cahill, 2013d; 2014b). 
Consider plane waves with energy E = ħω. Then (36) 
with v = 0 and V = 0 gives ψ = e

-ωt+ik⋅r
. When v ≠ 0, but 

locally uniform wrt to the diode, the energy becomes E 
→ E + ħk⋅v. This energy shift can be easily detected by 
the diode as the electron transmission current increases 
with increased energy. By using spatially separated 
diodes the speed and direction has been measured and 
agrees with other detection techniques. 

Although this Zener diode effect was only discovered 
in 2013, (Cahill, 2013d), Zener diode detectors have 
been available commercially for much longer and are 
known as Random Event Generators, (REG). That 
terminology was based on the flawed assumption that the 
quantum tunnelling fluctuations were random wrt an 
average. However the data (Cahill, 2013d) showed that this 
is not the case. That experimental result contradicts the 
standard interpretation of “randomness” in quantum 
processes, which dates back to the Born interpretation in 
1926. To the contrary the recent experiments show that the 
fluctuations are not random, but are directly determined by 
the fluctuations in the passing dynamical space. 

The various detections of the dynamical space always 
showed turbulence/wave effects and we can represent the 
fractal structure of this space in Fig. 6. 
 

 
 
Fig. 6. Representation of the fractal wave data revealing the fractal 

textured structure of the 3-space, with cells of space having 

slightly different velocities and continually changing and 

moving wrt the Earth with a speed of ∼500 km sec−1 and 

from a southerly direction This “pink space” is suggestive 

of the 1/f spectrum of the detected fluctuations 
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Fig. 7. Circuit of Zener Diode Gravitational Wave Detector, 

showing 1.5 V AA battery, 1N4728A Zener diode 

operating in reverse bias mode and having a Zener 

voltage of 3.3 V and resistor R = 10 KΩ. Voltage V 

across resistor is measured and used to determine the 

space driven fluctuating tunnelling current through the 

Zener diodes. Current fluctuations from two collocated 

detectors are shown to be the same, but when spatially 

separated there is a time delay effect, so the current 

fluctuations are caused by space speed fluctuations. 

Using diodes in parallel increases S/N 

 

Neo-Lorentz Relativity 

The major extant relativity theories-Galileo’s 

Relativity (GaR), Lorentz’s Relativity (LR) and 

Einstein’s Special Relativity (SR), with the latter much 

celebrated, while the LR is essentially ignored. Indeed 

it is often incorrectly claimed that SR and LR are 

experimentally indistinguishable. It has been shown 

that (i) SR and LR are experimentally distinguishable, 

(ii) that comparison of gas-mode Michelson 

interferometer experiments with spacecraft earth-flyby 

Doppler shift data demonstrate that it is LR that is 

consistent with the data, while SR is in conflict with the 

data, (iii) SR is exactly derivable from GaR by means 

of a mere linear change of space and time coordinates 

that mixes the Galilean space and time coordinates 

(Cahill, 2013a). So it is GaR and SR that are 

equivalent. Hence the well-known SR relativistic 

effects are purely coordinate effects and cannot 

correspond to the observed relativistic effects. The 

connections between these three relativity theories has 

become apparent following the discovery that space is 

an observable dynamical textured system and that space 

and time are distinct phenomena, leading to a neo-

Lorentz Relativity (nLR). The observed relativistic 

effects are dynamical consequences of nLR and 3-

space. In particular in SR length contraction of rods and 

time dilation of clocks are supposedly caused only by 

motion wrt the observer, whereas in nLR these effects 

are caused by motion wrt the space local to the rods 

and clocks and apply only to actual rods and clocks. In 

the case of Maxwell’s EM theory the dynamical space 

is incorporated into the vacuum field equation by 

making the change ∂/∂t → ∂/∂t + v⋅∇ (Cahill 2009a). 

Conclusion 

The discovery that a dynamical space exists by 

Cahill and Kitto (2003) represented a dramatic turning 

point in our understanding of reality, since until then 

physicists had assumed that space and time, or even 

spacetime, were successful purely geometrical 

modellings of the phenomena of space and time and 

denied any notion that a dynamical 3-space exists 

which displays a flow velocity wrt an observer and 

which displays turbulence/gravitational wave effects. 

These are now easy to measure and characterise, 

exhibiting a fractal time dependent structure. This 

space is fundamental to all phenomena and we are now 

entering a new epoch in physics in which the role of 

space in all phenomena is now emerging, see for 

example the recent discoveries re solar flares and 

earth climate, (Cahill 2014b). Here we have reviewed 

two related aspects of this new physics: First we 

considered reality to be a self referencing stochastic 

network and showed that there is evidence that a 

dynamical fractal space arises and with quantum 

matter also arising as topological defects in the space. 

As well we have briefly discussed the consequences 

of modifying theories of the quantum, EM radiation 

and gravity by including a dynamical space modelled 

at the classical level by a velocity field. Of key 

significance is that in recent years a variety of new 3-

space detection technologies have been devised, with 

the latest being the nanotechnology pn diode detection 

device, which is incredibly simple, cheap and robust. 

That success of that device demonstrated the standard 

interpretation of “quantum randomness” was 

incorrect, namely that the observed fluctuations were 

caused by the space passing through the diode. 
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