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Abstract: We present status of the 3-3-1 models and their implications to 
cosmological evolution such as inflation, phase transitions and sphalerons. 
The models can deal not only with the issues such as neutrino physics, 
dark matter, etc, but they are also able to provide quite good agreement 
with the Standard Cosmology: The inflation happens at the GUT scale, 
while phase transition has two sequences corresponding two steps of 

symmetry breaking in the models, namely: SU(3) → SU(2) and SU(2) → 
U(1). Some bounds on the model parameters are obtained: in the RM331, 
the mass of the heavy neutral Higgs boson is fixed in the range: 
285.56GeV < Mh2 < 1.746TeV and for the doubly charged scalar: 
3.32TeV < Mh--< 5.61TeV. 
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Introduction 

It is well known that our Universe content is 68.3% 
of Dark Energy (DE), 26.8% of Dark Matter (DM) and 
of 4.9% of luminous matter (Ade et al., 2013). With the 
unique fact of accelerating Universe, the core origin of 
Dark Energy is still under question, while the existence 
of Dark Matter is unambiguous. According to the 

Standard Cosmology, in the moment at 10−36s after the 
Big Bang (BB), there was inflation and our Universe has 
been expanded exponentially. The inflationary scenario 
solves a number of problems such as the Universe’s 
flatness, horizon, primordial monopole, etc. It is well 
known that there is no anti-matter in our Universe, or 
other word speaking: at present there exists a Baryon 
Asymmetry of Universe (BAU). The baryon number 
vanishes (nB = 0) at the BB and this conflicts with the 
present BAU. Nowadays, the BAU is one of the greatest 
challenges in Physics and any physical model has to give an 
explanation. The BAU is realized if three Sakharov’s 
conditions are satisfied (Sakharov, 1967; Mukhanov, 2005): 
 

• B violation, 

• C and CP violations, 

• deviation from thermal equilibrium 
 

Over the half of Century, the Standard Model (SM) of 
the electromagnetic, weak and strong interactions 
successfully possesses a great experimental examinations 
and stands for future development. Despite its great 
success, the model still contains a number of unresolved 
problems such as the generation number of quarks and 
leptons, the neutrino mass and mixing, the electric charge 

quantization, the existence of about one quarter of DM, 
etc. The aforementioned problems require that the SM 
must be extended. 

Among the extensions beyond the SM, the models 

based on SU(3)C ⊗ SU(3)L ⊗ U(1)X (3-3-1) gauge group 
(Pisano and Pleitez, 1993; Singer et al., 1980) have 
some interesting features including the ability to 
explain the generation problem (Pisano and Pleitez, 
1993; Singer et al., 1980) and the electric charge 
quantization (Pires and Ravinez, 1998). It is noted that in 
this scheme the gauge couplings can be unified at the scale 
of order TeV without super symmetry (Boucenna et al., 
2015). The 3-3-1 models have two interesting properties 
needed for the mentioned aim, namely: first, the lepton-
number violation due to the fact that lepton and anti-
lepton are put in the triplet (Chang and Long, 2006). 
Second, one generation of quarks transforms differently 
from other two. This leads to the flavor changing neutral 
current at the tree level mediated by new Z′ gauge boson 
(Long and Van, 1999). 

The 3-3-1 models have been considered in aspects 
of collider physics (Cieza Montalvo et al., 2013; 
2012; Yue et al., 2013; Caetano et al., 2013), muon 
anomalous magnetic moments (Ky et al., 2000), neutrino 
physics (Dong et al., 2011), DM (Fregolente and 
Tonasse, 2003; Dong et al., 2014).... In this review I will 
concentrate on Early Universe aspects of the models. 

This study is organized as follows. In Section II we 
give a brief review of the 3-3-1 models and their 
modified versions. In Section III, the cosmological 
inflation in the super symmetric economical 3-3-1 model 
is presented. In Section IV, we investigate the structure 
of the Electroweak Phase Transition (EWPT) sequence 
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in the 3-3-1 models with minimal Higgs sector, namely 
the reduced minimal 3-3-1 model (RM331) and the 
economical 3-3-1 model (E331), find the parameter 
ranges where the EWPTs are the strongly first-order to 
provide B violation necessary for baryogenesis and show 
the constraints on the mass of the charged Higgs boson. 
Section V is devoted for sphalerons in the reduced 
minimal 3-3-1 model. Finally, in Sec. VI we give 
conclusion on the possibility to describe cosmological 
evolution in the framework of the 3-3-1 models. 

The Models 

In the mentioned models, the strong interaction keeps 
the same as in the SM, while the electroweak part 

associated with SU(3)L ⊗ U(1)X has two diagonal 
generators T3 and T8 from which the electric charge 
operator is based on: 

 

3 8Q T T Xβ= + +  (1) 

 
The coefficient (=1) at the T3 is defined to make the 

3-3-1 models embed the SM. The lepton arrangement 
will define the parameter β which distinguishes two main 

versions: The minimal version with 3β =  and the 

version with neutral leptons/neutrinos 1 3β = −  at the 

bottom of the triplet. 

The Minimal 3-3-1 Model 

The minimal version (Pisano and Pleitez, 1993) 

contains lepton triplet in the form: 
 

( , , ) (1,3,0)c T

L l L
f l lν= ∼  (2) 

 

Two first quark generations are in anti-triplet and the 

third one is in titriplet: 
 

3 3 3

3 3

1
( , ) 3, 3,

3

(3,1,2,3), (3,1 1 / 3), (3,1, 4 / 3), 1,2,

( , , ) (3,3,2 / 3)

(3,1,2 / 3), (3,1, 1 / 3), (3,1,5 / 3)

T

iL iL iL iL

iR iR iR

T

L L L L

R R R

Q d u D

u d D i

Q u d T

u d T

 
= − − 

 

− − =

=

−

∼

∼ ∼ ∼

∼

∼ ∼ ∼

 (3) 

 

To provide masses for all quarks and lepton, the 

Higgs sector needs three scalar triplets and one sextet: 
 

( )
( )
( )

0

1 2 3

0

1 2 3

0

1 2 3

, , (1,3, 1)

, , (1,3,0)

, , (1,3,1)

(1,6,0)

T

T

T

X X X X

S

η η η η

ρ ρ ρ ρ

− −−

− +

+ ++

= −

=

=

∼

∼

∼

∼

 (4) 

 
with 

0 0

2 1

0 0

3 23

: / 2,

/ 2, / 2 / 2

VEV

u and S

ρ υ η

η ω υ

=

= = ɺ
 

 
The gauge sector of this model contains five new 

gauge bosons: One neutral Z′ and two bileptons carrying 
lepton number 2: Y± and X±±. In (2), lepton and 
antilepton lie in the same triplet and this leads to lepton 
number violations in the model. Hence, it is better to 
deal with a new conserved charge L commuting with the 
gauge symmetry (Chang and Long, 2006): 

 

8

4

3
L T L= +  (5) 

 
The exotic quarks T and Di have the electric charges, 

respectively, 5/3 and -4/3 and carry both baryon and 
lepton numbers L = ±2. 

The singly charged bilepton is responsible for the 
wrong muon decay: 
 

ee v vµµ → + + ɶ  

 

While the doubly charged bilepton with decay: 
 

X ll−− →  

 
Provides four leptons at the final states which is 

characteristic feature of the model. The model provides 
an interesting prediction for the Weinberg angle: 

 

2

'

1
( )

4
w Zsin Mθ ≤  

 
Besides the complication in the Higgs sector, the 

model also has one problem that it losses perturbative 
property at the scale above 5 TeV (Dias et al., 2005). 

The above Higgs sector is complicated; and recently 
it is reduced to the minimal with only two Higgs triplets 
(Dong et al., 2014; Ferreira et al., 2011). If the triplet ρ 
and χ are used then the model is called reduced minimal 
3-3-1 model (Ferreira et al., 2011), while ρ is replaced 
by η then it is called simple 3-3-1 model (S331) 
(Dong et al., 2014). 

It has been recently shown that due to the ρ parameter 
and the Landau pole, the minimal and its reduced version 
should be ruled out (Dong and Si, 2014). It is noted that the 
RM331 has nonrenormalizable effective interactions, so 
situation has to be considered carefully. 

The 3-3-1 Model with Right-Handed Neutrinos 

Leptons are in triplet (Singer et al., 1980): 
 

( , , ( ) ) (1,3, 1 / 3), (1,1, 1)a a a a T a

L L L L R
f v e N e= − −∼ ∼  (6) 
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where, a = 1, 2, 3 is a generation index and NL can be 
right-handed neutrino or neutral lepton. Two first 
generations of quarks are in antitriplets and the third 
one is in triplet: 
 

3 3 3

3 3

( , , ) (3, 3,0),

(3,1,2 / 3), (3,1, 1 / 3), (3,1, 1 / 3), 1,2,

( , , ) (3,3,1 / 3),

(3,1,2 / 3), (3,1, 1 / 3) (3,1,2 / 3)

T

iL iL iL iL

iR iR iR

T

L L L L

R R R

Q d u D

u d D i

Q u d T

u d T

= − −

− − =

=

−

∼

∼ ∼ ∼

∼

∼ ∼ ∼

  (7) 

 

The model with neutral lepton/neutrino 1 3β = −  

needs three scalar triplets to provide all fermions masses 
and the same for Spontaneous Symmetry Breaking (SSB): 
 

0 '0

0 ,

0 ,0

( , , ) (1,3, 1)

( , , ) (1,3,2)

( , , ) (1,3, 1)

T

T

X X X X

ρ ρ ρ ρ

η η η η

−

+ +

−

= −

=

= −

∼

∼

∼

 (8) 

 
The exotic quarks T and Di have electric charges as 

usual one, i.e., 2/3 and -1/3, respectively and carry both 
baryon and lepton numbers L = ±2. The new gauge 
bosons are: the neutral Z′ and two bileptons carrying 
lepton number 2: Y ± and X0. The neutral bilepton X0 is 
non-Hermitian and is responsible for neutrino oscillation 
(Long and Inami, 2000). 

Note that two Higgs triplets η and χ have the same 
structure, so ones can reduce number of Higgs triplets 
from three to two, namely we can use only ρ and χ to 
produce masses for quarks and leptons; and resulting 
model is called economical 3-3-1 model (Ponce et al., 
2003). As in the RM331, the nonrenormalizable 
interactions, in this case, are needed for production of 
quark masses (Ponce et al., 2003). 

Cosmological Inflation in the Super 

Symmetric Economical 3-3-1 Models 

The discovery of the 2.7K microwave background 
radiation arriving from the farthest reaches of the Universe, 
gained widespread acceptance, is positive point of the 
hot-universe theory, where the inflationary scenario 
(Guth, 1981; Linde, 1983) plays very important role. 
Cosmological Inflation (CI) can give solutions for above 
mentioned problems, hence it is a possible theory of the 
origin of all structures in the Universe, including ourselves! 

With above reasons, any beyond standard model has 
to have the cosmological inflation happened at the 
interval of 10−36-10−34s after the BB. With that 
moment, the energy scale of CI is about 1015 GeV. In 
(Huong and Long, 2010), the CI was considered in the 
framework of the super symmetric economical 3-3-1 
model (SE331) and a reason is the following: The E331 
is very simple, but there is no candidate for in flat on-a 
key element of CI. The SE331 has some advantages such 

as there are more scalar fields which can play a role of 
the inflaton and the Higgs sector is very constrained.  

A supersymmetric version of the minimal 3-3-1 
model has been constructed in (Montero et al., 2004) and 
its scalar sector was studied in (Duong and Ma, 1993). 
Lepton masses in the framework of the above-mentioned 
model were presented in (Montero et al., 2002), while 
potential discovery of supersymmetric particles was 
studied in (Capdequi-Peyranere and Rodriguez, 2002). In 
(Long and Pal, 1998), the R-parity violating interaction was 
applied for instability of the proton. A supersymmetric 
RM331 was presented in (Huong et al., 2013). 

The supersymmetric version of the 3-3-1 model with 
right-handed neutrinos has already been constructed in 
(Montero et al., 2004). The scalar sector was considered 
in (Huong et al., 2005) and neutrino mass was studied in 
(Dong et al., 2006). A supersymmetric version of the 
economical 3-3-1 model has been constructed in 
(Dong et al., 2007). Some interesting features such as 
Higgs bosons with masses equal to that of the gauge 

bosons: 
1

2 2( )We
W m m+ = and the bileptons X and Y

4

2 2( )Ym m
ξ ± = , 

have been pointed out in (Dong et al., 2008). Sfermions in 
this model have been considered in (Dong et al., 2007). In 
(Huong and Long, 2008) it was shown that bino-like 
neutralino can be a candidate for DM. 

In (Huong and Long, 2010), the authors have 
constructed a hybrid inflationary scheme based on a 
realistic supersymmetric SU(3)C⊗SU(3)L⊗U(1)X model 
by adding a singlet superfield φ which plays the role of 
the inflaton, namely the inflaton superfield. 

We remind that the existence of a U(1)Z does not 
belong to the MSSM and it spontaneously breaks down 
at the scale MX by Higgs superfield φ, which is singlet 
under the MSSM. The inflaton superfield couples with 
this pair of Higgs superfields. Therefore, the additional 
global supersymmetric renorrmalizable superpotential 
for the inflation sector is chosen to be (Copeland et al., 
1994; Dvali et al., 1994): 
 

' ' 2( , , )infW X X a XX µΦ = Φ − Φ  (9) 

 
The super potential given by (9) is the most general 

potential consistent with a continuous R symmetry under 

which φ → φeiγ φ, W → φeiγ W, while the product χχ′ is 
invariant (Dvali et al., 1994; Linde and Riotto, 1997). 

By a suitable redefinition of complex fields µ2, α are 

chosen to be positive real constants and the ratio 
a

µ
 

sets the U(1)Z symmetry breaking scale MX. The most 
general super potential consistent with a continuous R-
symmetry is given by: 
 

'( , , )tot R infW W W X X= + Φ  (10) 

 
With the super potential given in (9), the Higgs scalar 

potential takes the form: 
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2 21

2
tot i a softi

a

V F D V= + +∑ ∑  

 
where, i runs from 1 to the total number of the chiral 
super fields in Wtot, while Vsoft contains all the soft terms 
generated by super symmetry breaking at the low energy. 
Hence, the Higgs potential becomes: 
 

2 2 2 2 2
' ' ' 2

2 2 21

2

tot X X

a soft

a

V a X a X aXX

D Vρ ρ

µ µ µ

µ ρ µ ρ′

= + Φ + + Φ + − +

′+ + + +∑
 

 

The first derivatives ,
'

tot totV V

ρ ρ
∂ ∂
∂ ∂

are independent of χ, 

χ′, φ and the fields ρ, ρ′ will stay in their minimum 

independently of what the fields χ, χ′,  φ do. If we are 
mainly interested in what is happening above the 
electroweak scale and hence we do not take into account 
the dimensional Higgs multiplets ρ, ρ′. Then, the Higgs 
scalar potential is given by: 
 

2 2 22 2 ' 2

2 2

* *1 1

2 2

inf X X

a a

a a

V a X a X aXX

g X T X g X T X

µ µ µ′= + Φ + + Φ + − +

   ′+   
   

∑ ∑
 (11) 

 
Let us denote: 

 

X
a Sµ φ+ Φ ≡  (12) 

 
where, β is some constant and S is a new field, the Higgs 
potential (11) can be rewritten as: 
 

( ) 22 2 22 2

2 2

* *1 1

2 2

inf

a a

a a

V S X X aXX

g X T X g X T X

β µ′ ′= + + −

   ′ ′+   
   

∑ ∑
 

 
When D term vanishes along its direction, the 

potential contains only F term and has the form: 
 

( ) 22 2 22 2

inf
V S X X aXXβ µ′ ′= + + −  (13) 

 
From (13), it is clear that Vinf has an unique super 

symmetric minimum corresponding to: 
 

0

2
X

S

M X X
µ

=

′≡ = =
 (14) 

 

The ratio 
a

µ
sets the U(1)Z symmetry breaking MX, 

but Equtaion (14) is global minimum and 

supersymmetry is not violated (Dvali et al.,1994). 
Hence, inflation can take place but supersymmetry is not 
broken. This is F term inflation (Jeannerot, 1997). 

We assume that the initial value for the inflaton field 
is much greater than its critical value Sc. For 

c
S S

a

µ
> ≡ the potential is very flat in the S  direction 

and the χ, χ′ fields settle down to the local minimum of 
the potential, χ = χ′ = 0, but it does not drive S to its 
minimum value. The universe is dominated by a nonzero 

vacuum energy density, 
1

4
0V µ= , which can lead to an 

exponential expanding, inflation starts and 
supersymmetry is broken. 

By the Coleman-Weinberg formula in (Coleman and 
Weinberg, 1973), at the one-loop level, the effective 
potential along the inflaton direction is given by: 
 

2
4

2 2

1
( 1)

64

F i
i

i

m
V m In

π
 

∆ = −  
Λ 

∑  

 
where, F = -1 for the fermionic fields and F = 1 for the 
bosonic fields. The coefficient (-1)F shows that bosons 
and fermions give opposite contributions. The sum runs 
over each degree of freedom i with mass mi and _ is a 
renormalization scale. 

The effective potential (along the inflationary 
trajectory S > Sc, χ = χ′ = 0) is given by: 
 

4

2

224 2
24 2 2 2

22 2 2

2
22 2 2

22

3
( )

16

2 ( ) 1

( ) 1

effV S

S a
In S a In

a S

a
S a In

S

µ
π

βµ µ
β β µ

β

µ
β µ

β

= +

  
  + + + +

 Λ   
  

 + − − 
    

 (15) 

 
It is to be noted that for S > Sc, the universe is 

dominated by the false vacuum energy µ4. When S field 
drops to Sc, then the GUT phase transition happens. At 
the end of inflation, the inflaton field does not need to 
coincide with the GUT phase transition. The end of 
inflation can be supposed to be on a region of the 
potential which satisfies the flatness conditions (see, for 
example, (Lyth and Riotto, 1999)): 
 

1, 1η∈≪ ≪  (16) 

 
where, we have used the conventional notations: 
 

2 2

,
16 8

P P
M V M V

V V
η

π π
′ ′′ ∈≡  

 
 (17) 

 
where, primes denote a derivative with respective to S. 
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To compare with observational COBE data, we use 

the slow-roll approximation with parameters: ∈ and η. 

The first condition in (16): ∈≪1 indicates that the 
density ρ is close to V and is slowly varying. As a result, 
the Hubble parameter H is slowly varying, which implies 

that one can write a ∝eHt at least over a Hubble time or 
so. The second condition η≪1 is a result of the first 
condition plus the slow-roll approximation. The conditional 
phase may end before the GUT transition if the flatness 
conditions (16) are violated at some point S>Sc. 

Let us denote a dimensionless variable: 

 

c

S
y

aS

β
≡  (18) 

 

Imposing the condition α = β, which means that |φ| ≈ 
|S| ≫ µχ, we get then: 

 
2

2
2 22

2

2

2

2
2 2

2

2

1
( 1) 1

3 1
,

4 16 1
( 1) 1

1
(3 1) 1

3

4 2 1
(3 1) 1

P

X

P

X

y y In
ya M

M
y y In

y

y In
yaM

M
y In

y

π π

η
π π

  
− − +  

    ∈=        + + +    

  
+ +  

    =        + − −    

 (19) 

 

The chaotic inflation driven by the φ3 is in good 

agreement with the WMAP data, while for the φ4 

potential, the situation is negative.  

The above model cannot resolve the horizon/flatness 

problems of the BB cosmology and violates the slow-roll 

conditions η ≪ 1 (the η problem). To deal with these 

problems, we should consider the F-term inflation with 

minimal Kahler potential. 
The F-term inflation with Kahler potential is 

defined by: 
 

2( , , ) ( )
stand X

W X X aS XX M′ ′Φ = −
⌢ ⌢ ⌢

 (20) 

 

Keeping in mind that
2

a aK φ= ∑ , we obtain the 

scalar potential: 
 

2 2 2 2 2
2 2 2

2 4

2 4 4
2 2 2 2

2 4 4

2 ( 2 )
2 1

2

( ) 1 2 2
2

m

F

P P

X

P P P

S S
V a S

m m

S
a M

m m m

φ φ
φ

φ φ
φ

 + +
= + + 

 

 
+ − + + + 

 

 (21) 

 

where, we have assumed that 
2 2ϕ ϕ′= . 

Let us consider how does this factor change the result. 

As we know, the slow-roll parameter is defined as: 

 

2

p

V
m

V
η

′′ =  
 

 

 

where, the prime refers to derivative with respect to S. 

The super gravity scalar potential for S>Sc is given by: 

 
2 4

2 4 4

42

X
X

p

a M
V a M S

m
ο = +  (22) 

 

From (22), it follows derivative of 
2 4

2 2

4 2

1
: 1

2 2

X

p p

a M
V V S and S

m m
η′′ =≃ ≪ . Therefore, the η-

problem is overcome. 

The potential given in (22) does not contain a term 

which can drive S to its minimum value, so we have to 

consider the effective potential. In this case, the spectral 

index n is given by: 

 
2

2 2 2

3

8 2 4 2

3
1 6 2 1 [ (16 9 ) 54

512

6 ( 40 9 ) 16 ( 5 9 ) ]

a
n x a a

x a x a

η ξ
π

ζ ζ

= − ∈ + = − + − +

− + + − +

 (23) 

 

where, 
2

2

X

P

M

M
ζ ≡ . 

Taking into account the WMAP data, we conclude 

that the value of e-folding number NQ must be larger 

than 45 and get bounds on the values of coupling α and 

ζ, which are presented in Table 1.  

It is interesting to note that due the inflaton with mass 

in the GUT scale, the model can provide masses for 

neutrino different from ones without inflationary 

scenario. With the help of the lepton-number-violating 

interactions among the inflaton and right-handed 

neutrinos, the non-thermal leptogenesis scenario is 

followed (Huong and Long, 2011). 

In recent work (Huong et al., 2015), the authors 

have considered the inflationary scenario and 

leptogenesis in newly proposed 3-3-1-1 model. Here, 

the scalar field that spontaneously breaks the U(1)N 

symmetry plays a role of inflaton. 

To finish this section, we emphasize that the 3-3-1 

models can provide the inflationary scenario or 

cosmological evolution of our Universe. 

 
Table 1. Bounds on the parameter ζ and coupling 

α  10−3 10−4 10−5 10−6 

ζ 25×10−6 25×10−7 25×10−9 3×10−11 
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Electroweak Phase Transition in 3-3-1 

Models 

It is known that if baryon number is conserved and 
is equal to zero, it will equal to zero forever. If baryon 
number does not satisfy any conservation law, it 
vanishes in the state of thermal equilibrium. Therefore 
we need the third Sakharov’s condition. The second 
condition is appropriate for ensuring a different decay 
rate for particles and antiparticles (Mukhanov, 2005). 
The electroweak phase transition is the transition 
between symmetric phase to asymmetric phase in order 
to generate mass for particles. Hence, the phase 
transition is related to the mass of the Higgs boson 
(Mukhanov, 2005). 

In the basic model of particles, the first and second 
conditions can be satisfied, but conditions on thermal 
imbalance is difficult to satisfy. So the analysis of the 
third condition is the only approach at present in order to 
explain the baryon asymmetry. 

Why is the first order phase transition? For very large 
temperature, the effective potential has only one 
minimum at the zero. As temperature drops below the 
critical temperature (Tc), the second minimum appears. 
If the two minimums are separated by a potential barrier, 
the phase transition occurs with bubble nucleation. 
Inside the bubbles, the scalar field acquires a nonzero 
expectation value. If the bubble nucleation rate exceeds 
the universe’s expansion rate, the bubbles collide and 
eventually fill all space. Such a transition is called the 
first order phase transition. It is very violent and one can 
expect large deviations from thermal equilibrium 
(Mukhanov, 2005). The other possible scenario takes 
place if the two minimums are never separated by a 
potential barrier. The phase transition is a smooth 
transition or the second order phase transition. 

Phase Transition in Reduced Minimal 3-3-1 

Model 

For the SM, although the EWPT strength is larger than 
unity at the electroweak scale, it is still too weak for the 
mass of the Higgs boson to be compatible with current 
experimental limits (Mukhanov, 2005; Kajantie et al., 
1996); this suggests that Electroweak Baryogenesis 
(EWBG) requires new physics beyond the SM at the 
weak scale (Bastero-Gil et al., 2000). Many extensions 
such as the two-Higgs-doublet model or Minimal Super 
symmetric Standard Model have a more strongly first-
order phase transition and the new sources of CP 
violation, which are necessary to account for the 
BAU; triggers for the first-order phase transition in 
these models are heavy bosons or DM candidates 
(Cline et al., 2009; Kanemura et al., 2005; Ham et al., 
2010; Das et al., 2010). 

To start, let us consider the hight-temperature 
effective potential: 

2 2 2 3 4

0.( ) .
4

T
effV D T T E T

λ
υ υ υ′= − − +  

 
where, v is the VEV of Higgs. In order to have the 
strongly first-order phase transition, the strength of phase 

transition has to be larger than 1, i.e., 1c

c
T

υ
≥ . 

The phase transition has been firstly investigated in the 
SM. But the difficulty of the SM is that the strength of the 
first-order electroweak phase transition, which must be 
larger than 1 at the electroweak scale, appears too weak for 
the experimentally allowed mass of the SM scalar Higgs 
boson (Mukhanov, 2005; Kajantie et al., 1996). Therefore, 
it seems that EWBG requires a new physics beyond the SM 
at weak scale (Bastero-Gil et al., 2000). 

With the discovery of the Higgs boson, the study 
of phase transitions in the particle models is 
simplified: only to determine the order of phase 
transition. This opens a lot of hope for the extended 
models in examining the electroweak phase transition. 
The 3-3-1 models must have at least two Higgs 
triplets (Ferreira et al., 2011; Ponce et al., 2003). 
Therefore, the number of bosons in the 3-3-1 models 
will many more than in the SM and symmetry 
breaking structure is different to the SM. 

The physical scalar spectrum of the RM331 model is 
composed by a doubly charged scalar h++ and two 
neutral scalars h1 and h2 (Ferreira et al., 2011). These 
new particles and exotic quarks can be triggers for the 
first order phase transition. 

From the Higgs potential we can obtain V0 that 
depends on VEVs as the following: 
 

2 2 2 2

0 1 2

4 4 2 2

1 2 3 4

( , )

( )

X X

X X

V ρ ρ

ρ ρ

υ υ µ υ µ υ

λ υ λ υ λ λ υ υ

= +

+ + + +
 

 
The effective potential being a function of VEVs and 

temperature has the form: 
 

2

0 ( , ) ( , )

( , )

X boson X

c c

fermion X L L

V V M

W W m f f

ρ ρ

µ
µ ρ

υ υ υ υ

υ υ

= +

+

∑
∑

 

 
Averaging over space, we obtain: 

 
2

0 ( , ) ( , )

( , )

X boson X

c c

fermion X L L

V V M

W W m f f

ρ ρ

µ
µ ρ

υ υ υ υ

υ υ

= +

+

∑
∑

 

 
where, Wµ runs over all gauge fields. The RM331 has 
the following gauge bosons: Two like the SM bosons Z1, 
W± and the new heavy neutral boson Z2, the singly and 
doubly charged boson U±± and V±. Two doubly charged 
Higgs h++ and h--, one heavy neutral Higgs h2 and one 
like-SM Higgs h1. Using Bose-Einstein and Fermi-Dirac 
distributions for bosons and fermions, we can obtain the 
effective potential in the RM331 as follows: 
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1 2

1 2

2

2

2

2 2 22 2
331 4 4 4 4

0 2 2 2 2 2 2

2
2 2 2

4 4 4 4

2 2 2 2 2 2

4

2

3
( , ) 2 4 12

64

1 3
2 2 2

64 64

2
4

Z Z QRM w t
eff X w t QZ Z

h h U V
h U Vh

h h

m m mm m
V V m In m In m In m In m In

Q Q Q Q Q

m m m m
m In m In m In m In

Q Q Q Q

mT m
F F

T

ρυ υ
λ

π π

π
π

++
++

++
−

 
 = + + + − −
 
 

   
 + + + +     

 
 + − +
 
 

1 2

4

2

4

2

3
4 12

4

3
2 2 2

4

Qt

Z Z W U V

mT m
F F

T T T

m mT m m m
F F F F F

T T T T T

π
π

π

+

− − − −

       
  + − +                 

          
    + − + + + +                  

 

 
where: 
 

(1)

0

2 2
(1)

( ,0)

( )
( ,0) 2

1

m

T

xa

m
F aJ a da

T

x a
J a dx

e

φ
φ

∞

 
=  

 

−
=

∫

∫

∓ ∓

∓
∓

 

 
The effective potential can be rewritten as follows: 

 

0

hard light

eff eff effV V V V= + +  

 
where: 
 

2 2

2 2

2 2 2
4 4 4

2 2 2 2

22 2
4 4 4

2 2 2 2

4

2

2

4

2

2

3
2

64

3
2 2 12

64

2
4

3
2 2

4

Z hhard h
eff hZ h

QU V
U V Q

h h

Z U V

m m m
V m In m In m In

Q Q Q

mm m
m In m In m In

Q Q Q

T m m
F F

T T

T m m m
F F F

T T T

λ

π

π

π

++
++

++
−

−

 
 = + +
 
 

 
+ + −  

 

    
+ − +         

     
+ − + + − +     

     
12

Qm
F

T
+

  
      

 

 
And: 
 

1

1

1

2 2 2
4 4 4

2 2 2 2

4

2

3
2 2

64

3
2 4

4

Z

Zlight w t
eff w tZ

w t

m m m
V m In m In m In

Q Q Q

mT m m
F F F

T T T

λ

π − − +

 
 = + +
 
 

        + + +          

 

 

Here light

effV  is like the effective potential of the SM, 

while hard

effV  is contributions from heavy particles. We 

expect that hard

effV contributes heavily in the EWPT. 

The symmetry breaking in the RM331 can take place 
sequentially. Because two scales of symmetry breaking 
are very different, υχ0 ≫ υρ0 (υχ0  ∼ 4 − 5 TeV, υρ0 = 246 
GeV) and because of the accelerating universe, the 
symmetry breaking SU(3) → SU(2) takes place before the 

symmetry breaking SU(2) → U(1). The symmetry breaking 
SU(3) → SU(2) through χ0, generates the masses of the 
heavy gauge bosons such as U±±, V±, Z2 and exotic quarks. 

Through the boson mass formulations in the above 

sections, we see that boson V± only involves in the phase 

transition SU(3) → SU(2). Z1, W
± and h1 only involve in 

the phase transition SU(2) →U(1). However, U±±, Z2 and 

h-- involve in both two phase transitions. The first one is 

the phase transition SU(3) → SU(2). This phase 

transition involves exotic quarks, heavy bosons, without 

involvement of the SM particles, so υρ is omitted in this 

phase transition. The effective potential can be rewritten 

as follows (Phong et al., 2013): 
 

2 2 2 3 4

(3) (2) 0( )
4

eff T
SU SU X X XV D T T E T

λ
υ υ υ→

′
′ ′ ′= − − +  

 
The minimum conditions are: 

 

2

2

0 0 0( ) 0; ( ) ; ( )eff eff eff h
V X V X V X m′ ′′= = =  

 
where: 
 

2

2 2

2

2

2

2 2 2 2 2

2

0

2 2 4 4 4 4 4

0 2 2

0

3 3 3 3

3

0

22
4 4 4

2 2 2
2

2 2 2 2

0 0 2

1
{6 3 6 18 2 },

24

1 1 1
(6 3 6 36 2 ) ,

4 32

1
(6 3 6 2 ),

12

6 3 6
1

1
2 8

U V Q hZ
X

U V Q hh Z
X

U V hZ
X

ZV
V UZ

h
T

X X h

D m m m m m

T m m m m m m
D

E m m m m

mm
m In m In m

m bT bT

m m
In

υ

π υ

πυ

λ
υ π υ

±

±

±

′ = + + + +

  ′ = − + + − + 
  

′ = + + +

+ +
′ = −

22 2
4 4

2 2 2
36 2

QU h
Q h

F

m m
m In m In

bT b T bT

±
±

  
  
  
  
  − +    

 
The critical temperature is determined as follows: 

 

'

0

21 /
c

c

T

T
T

E D λ

′
′ =

′ ′ ′−
 (24) 
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For simplicity, let us assume mh2 = X, mh-- = mZ2 = mQ = 
K. In order to have the first-order phase transition, the phase 

transition strength must be larger than 1, i.e., 1Xc

Tc

υ
≥

′
. 

If X is larger than 200 GeV, the heavy particle 
masses are in range of few TeVs in order to have the 
first-order phase transition (Phong et al., 2013). In order 
to have the first-order phase transition, if the 
contribution of h2 with the mass is smaller than 200 
GeV, K is smaller than 1.5 TeV (Phong et al., 2013). 

The second/last step is the phase transition SU(2) → 
U(1). This phase transition does not involve the exotic 
quarks and boson V±. Hence, in this case, vχ is neglected 
and the contribution of U ∓∓  is equal toW ∓ . Then: 
 

2

2

1 2

1 2

2
2

4 4

(2) (1) 0 2 2 2

2 2
2

4 4 4 4

2 2 2

2 2 2
4

2 2

4 4

2

2 2

1
( ) 2

64

2 2
3

64
4

3
2

4 4

2

heff h
SU U hh

Z ZU
U WZ Z

W t
t

h h

U

m m
V m In m In

Q Q

m mm
m In m In m In m

Q Q Q

m m
In m In

Q Q

T m m T
F F

T T

m
F

T

ρυ υ
π

π

π π

++
→ ++

++
−

 
 = +
 
 

 
 + + +
 +  
 − 
 

    
+ − + +    

    

 
− 

 
1 2 2 4

Z Z W t
m m m m

F F F F
T T T T

− − +

        
    + + − + +               

 

 

Denoting (2) (1) (2) (1) ( , )eff eff

SU U SU UV V Tρυ→ →≡ , at high-

temperature, it becomes: 
 

3
331 2 2 3 4

0( ).
4

RM T
effV D T T ETρ ρ ρ

λ
υ υ υ= − − +  

 
where: 
 

{ }
1 2 2

1 2

1 2 2

1

2 2 2 2 2 2 2

2

0

2 4 4

1 2 22
00

4 4 4 4 4

2

3 3 3 3 3 3

3

0

2
4

2

2

2 2 2 2

0 0

1
6 6 3 3 6 2 ,

24

1 1
(6 61 4 32 ,

3 3 12 2 )

1
(6 6 3 3 2 ),

12

6 3

1
1

2 8

W U t hZ Z h

h W U

t h hZ Z

W U hZ Z h

W
W

h

T

h

D m m m m m m m

m m m
T

D
m m m m m

E m m m m m m

m
m In m

bT

m

m

υ

π υ

πν

λ
υ π υ

±

±

±

= + + + + + +

 − + 
=  

 + + − + + 

= + + + + +

+

= −

1

1 2

2

4

2 2

4

2 2

2 2
4 4

2 2

2
4

2 2

3

6 12

2

Z

Z Z

Z

U t
U t

F

h
h h

m m
In m In

bT bT

m m
m In m In

bT b T

m
m m In

bT

±
±

  
  
  
  
  + +
      −      + +    

 (25) 

Here we have assumed mH2 = mh-- = mZ2 ≡ Y with 

boson Z2 and used Q ≡ υρ0 = υ0 = 246 GeV. 
In order to have the first-order phase transition, the 

phase transition strength has to be larger than 1, i.e., 

1
c

c
T

ρυ
≥ . The critical temperature Tc is given by: 

 

0

21 /
c

Tc

T
T

E Dλ
=

−
 (26) 

 
To survive the critical temperatures, Tc, T0 must be 

positive, so T0 is also positive, from which we can draw 
on conditions for heavy particles. Therefore, we get: 
 

2 4 4 4 4 4 4

1 1 2 22 2

0

1 1
(6 6 3 3 2 ) 0

4 32
h W U Z Z h hm m m m m m m

π υ ±− + + + + + >  

 
With mh1 = 125 GeV and assuming mZ2 = mh2 = mh-- = 

Y, we can obtain Y < 344.718 GeV (Phong et al., 2013). 

When 1
c

c
T

ρυ
= , i.e., 2E/λTc = 1, we obtain Y = 203.825 

GeV and the critical temperature is in range 0 < Tc < 
111.473 GeV. The contributions of new particles 
make of the strongly first-order phase transition that 
the SM cannot. However, there is one thing special, 
heavy particles as U±±, h2, h--, Z2 that contribute only 
the little part in their mass. 

When temperature goes close to Tc, the second 
minimum slowly formed distinct, i.e., the phase 
transition nucleation appears.  

When temperature goes over Tc, the minimum goes 
to zero, i.e., the symmetry phase is restored. This was 

showed that phase transition SU(2) → U(1) is the first-
order phase transition (Phong et al., 2013). 

We find that the effective potential of this model is 
different from that of the SM and it has contributions 
from heavy bosons as triggers for the strongly first-order 
phase transition with mh1 = 125 GeV. 

We have got the following constraints on the mass of 
Higgs in RM331 (Phong et al., 2013): 
 

2285.56 1.746 ,3.32 5.61
h h

GeV M TeV TeV M TeV−−< < < <  

 

Thus we have used the effective potential at finite 
temperature to study the structure of the EWPT in the 
RM331 model. This phase transition is split into two 

phases, namely, the first transition is SU(3) → SU(2) or 

the symmetry breaking in the energy scale υχ0 in order to 
generate masses for heavy particles and exotic quarks. 

The second phase transition is SU(2) → U(1) at υρ0. 
The EWPT in this model may be the strongly first-
order EWPT with mh1 = 125 GeV if the heavy bosons 
masses are some few TeVs. 
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Phase Transition in Economical 3-3-1 Model 

In this section, we follow the same approach for E331 

model (Ponce et al., 2003), whose lepton sector is more 

complicated than that of the RM331 model. The E331 

model has the right-handed neutrino in the leptonic 

content, the bileptons (two singly charged gauge bosons 

W±, Y± and a neutral gauge bosons X0), the heavy neutral 

boson Z2 and the exotic quarks. The masses of particles in 

the E331 were summarized in Table 2.  

As in the RM331, here EWPT takes place with two 

transitions: (i) SU(3) → SU(2) at the scale of ω0 and 

the transition SU(2) → U(1) at the scale of υ0 (Phong 

et al., 2015). 

The first phase transition SU(3) → SU(2) due to ω 

provides the bounds on parameters presented in Table 3.  

The new bosons and exotic quarks can be triggers for 

the EWPT SU(3) → SU(2) to be the first-order. It was 

shown that the EWPT SU(2) → U(1) is the first-order phase 

transition, but it seems quite weak (Phong et al., 2015). 

Electroweak Sphalerons in the Reduced 

Minimal 3-3-1 Model 

To be consistent with cosmological evolution, our 

strategy is the following: the model has to have an 

inflation or phase transition of the first-order. As a 

result, the leptogenesis or CP-violation exist. Then 

sphaleron completes to produce the BAU. Sphaleron 

is a transition at high temperature where thermal 

fluctuations can bring the magnitude of the Higgs 

field from zero VEV over the barrier to nonzero VEV 

classically without tunneling. In (Phong et al., 2014), 

the sphalerons in the RM331 were considered. In the 

SM, the sphaleron rate is very small, about 10−60 

(Klinkhamer and Manton, 1984; Akiba et al., 1989; 

Moore, 1998; Farrar and Shaposhnikov, 1993 Arnold 

and McLerran, 1987); this rate is much smaller than 

the rate of BAU and smaller than the cosmological 

expansion rate. 

To study the sphaleron processes, we consider the 

Lagrangian of the gauge-Higgs system: 

 

†

†

1
( )

4

( ) ( ) ( ) ( , )

a v

gauge vL Higgs F D X

D X D D V X

µ
µ µ

µ µ
µ ρ ρ ρ

−− = − +

+ −
 (27) 

 
Assuming the least energy has the pure-gauge 

configurations ,( 0)a

i jF = functional in the temporal gauge: 

 
3 † †( ) ( ) ( ) ( ) ( , )d X D X D X D D V Xµ µ

µ µε ρ ρ ρ = + + + ∫  (28) 

Table 2. Mass formulations of bosons in the E331 model 

Bosons m2 (ω, υ) m2(ω) m2(υ) 

2

W
m ±  

2
2

4

g
υ  0 80.392 (GeV)2 

2

Y
m ±  ( )

2
2 2

4

g
ω +υ  

2
2

4

g
ω  80.392 (GeV)2 

0

2

X
m  

2
2

4

g
ω  

2
2

4

g
ω  0 

1

2 2

ZZ
m ~ m  

2
2

24 w

g
υ

c
 0  91.682 (GeV)2 

2

2 2

′ZZ
m ~ m  

2 2
2

23 4−
w

w

g c
ω

s
 

2 2
2

23 4−
w

w

g c
ω

s
 0 

0
1

2

H
m  

2
23

2

1

2
2

 
 
 

λ
λ - υ

λ
 0 1252 (GeV)2 

0
1

2

H
m  

2
2 23

1

1

2
2

− +
λ

λ ω υ
λ

 2

1
2λ ω  

2
23

12

λ
υ

λ
 

2

2
±

H
m  ( )2 24

2
+

λ
ω υ  24

2

λ
ω  24

2

λ
υ  

 

Table 3. The mass ranges of 0

1H  and 2H ±  for the first-order 

EWPT SU(3) → SU(2) and their upper bounds by the 

condition mboson < 2.2 × 
c

T ′  

ω 
c

T ′
 

1H
m ±  

2H
m ±  Upper bound 

[TeV] [GeV] [GeV] [GeV] [GeV] 

1 350 
1

300
H

0 < m ± <  
2

720
H

0 < m ± <  770 

2 650 
1

600
H

0 < m ± <  
2

1440
H

0 < m ± <  1430 

3 950 
1

900
H

0 < m ± <  
2

2150
H

0 < m ± <  2090 

4 1300 
1

1200
H

0 < m ± <  
2

2870
H

0 < m ± <  2860 

5 1600 
1

1500
H

0 < m ± <  
2

3590
H

0 < m ± <  3520 

 

By the temperature expansion, the energy functional 
is given by: 
 

3 2 2 2

0

1 1
4 ( ) ( ) ( , ; )

2 2
X eff X

d X V Tρ ρε π υ υ υ υ
∞  = ∇ ∇ +  ∫  (29) 

 
In the static field approximation, we have two 

equations of motion for the VEVs in spherical 
coordinates (Phong et al., 2014) for the VEVs: 
 

2
( , )

0
eff X

X X

X

V Tυ
υ υ

υ

∂
+ ∇ − =

∂
ɺɺ  (30) 

 

And: 
 

2
( , )

0
effV Tρ

ρ ρ
ρ

υ
υ υ

υ

∂
+ ∇ − =

∂
ɺɺ  (31) 

 

Then, the sphaleron energies in the SU(3) → SU(2) and 

SU(2) → U(1) phase transitions, are given, respectively: 
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2

2

. (3)

1
4 ( , )

2
X

sph su eff X

d
V T r dr

dr

υ
ε π υ

  
 = + 
   

∫  (31) 

 
2

2

. (2)

1
4 ( , )

2
sph su eff

d
V T r dr

dr

ρ
ρ

υ
ε π υ

  
 = +     

∫  (32) 

 
The sphaleron rate per unit time per unit volume, 

 Γ/V, is characterized by a Boltzmann factor, exp (-

 ε/T), as follows (Arnold and McLerran, 1987; 1988; 
Brihaye and Kunz, 1993): 
 

4 4/ ( / )V a T exp TεΓ = −  (34) 

 
where, V is the volume of the EWPT’s region, T is the 
temperature, ε is the sphaleron energy and α = 1/30. 

We will compare the sphaleron rate with the 
Hubble constant, which describes the cosmological 
expansion rate at the temperature T (Joyce, 1997; 
Onofrio et al., 2012): 

 
2 4

2

290 pl

gT
H

M

π
=  (35) 

 

where, g = 106.75, Mpl = 2.43×1018 GeV. 
Assuming that the VEVs of the Higgs fields do not 

change from point to point in the universe, then we have 

0X
dd

dr dr

ρυυ
= =  and: 

 

( ) ( )
0, 0

eff X eff

X

V V ρ

ρ

υ υ

υ υ

∂ ∂
= =

∂ ∂
 (36) 

 
Equation (36) shows that υχ and υρ are the extremes 

of the effective potentials. The sphaleron energies can be 
rewritten as: 
 

3
2

. (3)

4
4 ( , ) ( , )

3 Xm
sph su eff eff X

r
V X T r dr V T

υ

π
ε π υ υ= =∫  (37) 

 
And:  

 

3
2

. (2)

4
4 ( , ) ( , )

3 m
sph su eff eff

r
V T r dr V T

ρ
ρ ρ υ

π
ε π υ υ= =∫  (38) 

 

where, υχm, υρm are the VEVs at the maximum of the 
effective potentials. From (37) and (38), it follows that 
the sphaleron energies are equal to the maximum heights 
of the potential barriers. 

The universe’s volume at a temperature T is given 

by 
3

3

4 1

3

r
V

T

π
= = . Because the whole universe is an 

identically thermal bath, the sphaleron energies are 
approximately: 
 

4 4

. (3) . (2)3 3

' '
;

4 ' 4 '
sph su sph su

T T

E T E T
ε ε

λ λ
∼ ∼  (39) 

 
From the definitions (37) and (38), the sphaleron 

rates take the form, respectively: 
 

4
4

(3) 3

'

4 '
su w

T

E T
T exp

T
α

λ
 

Γ = − 
 

 (40) 

 
And:  

 
4

4

(2) 3

'

4 '
su w

T

E T
T exp

T
α

λ
 

Γ = − 
 

 (41) 

 

For the heavy particles, E, λ, E′ and λ′ are constant 
and the sphaleron rates (for the the phase transition 

SU(2) → U(1)) in this approximation are the linear 
functions of temperature (Phong et al., 2014) 

Thus, the upper bounds of the sphaleron rates are 
much larger the Hubble constant (Phong et al., 2014): 

 
3 4 13

(3) (2)10 ; 10 10su suH H− − −Γ Γ∼ ≫ ∼ ≫ ∼  (42) 

 

In a thin-wall approximation, sphaleron rates are 
presented in Tables 4 and 5. 

Table 4. The sphaleron rate in the EWPT SU(3) → SU(2) with mq(vχ) = mh2(vχ) = 1500GeV 

 Rb.su(3)  εsph.SU(3) Γ SU(3) H  

T [GeV] [10−6 × GeV−1] Rb.su(3)/∆l′ [GeV ] [10−11 × GeV]  [10−12 × GeV] Γ SU(3)/H 

1479.48( 1

′Γ ) 10.0 10.0 6975.1700 1.63719×106 3.08195 5.31×106 

1450 12.0 12.0 12481.300 3.2702×104 2.96034 1.10×105 
1400 13.0 13.0 17206.300 7.94481×102 2.75970 2.878×103 
1390 15.0 15.0 23251.700 9.3264 2.72042 3.42 

1388.4556 (
c

′Γ ) 16.5 16.5 28135.100 0.2714 2.71438 1.00 

1387 17.0 17.0 29854.000 0.07687 2.70869 0.28 
1000 19.0 19.0 60590.800 5.98×10−19 1.40801 4.25×10−18 
900 22.0 22.0 89250.800 9.50×10−36 1.14049 8.33×10−35 

865.024 ( 0

′Γ ) 25.0 25.0 119110.36 1.69×10−52 1.05357 1.60×10−51 
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Table 5. The sphaleron rate in the EWPT SU(2) → U(1) with mh2(υρ) = 100GeV, mh±±(υρ) = 350GeV  

 Rs.su(2)  εsph.SU(2) ( )2SUΓ  H 

T [GeV] [10−4 × GeV−1] Rs.su(2)/ ∆l [GeV] [10−12 ×GeV] [10−14 ×GeV] ( )2
/SU HΓ  

141.574 (T1) 6.0 10 742.838 919936.07000000 2.82211 3.25×107 
141.5 8.0 10 1020.870 128525.28000000 2.81916 4.55×106 
141 10.0 10 1442.750 6264.89000000 2.79927 2.23×105 
140 12.0 12 2342.210 9.37289000 2.75970 339.6000000 
138.562 (Tc) 13.1 13 3135.750 0.02703000 2.70300 1.0000000 
137 14.0 14 3922.290 0.00006220 2.64270 2.357×103 
130 16.0 16 6567.080 1.847×10−14 2.37900 7.76×10−13 
120 18.0 18 10068.200 5.403×10−29 2.02754 2.66×10−27 
118.42 (T0) 20.0 20 12656.700 5.595×10−39 6.20900 9.01×10−38 

 

Here Rb.su(3) and ∆l′ are respectively the radius and 
the wall thickness of a bubble which is nucleated in the 
phase transitions. 

We conclude that the sphaleron rates are larger than 
the cosmological expansion rate at temperatures above 
the critical temperature and are smaller than the 
cosmological expansion rate at temperatures below the 
critical temperature. For each transition, baryon violation 
rapidly takes place in the symmetric phase regions but it 
also quickly shuts off in the broken phase regions. This 
may provide B-violation necessary for baryogenesis, as 
required by the first of Sakharov’s conditions, in the 
connection with non-equilibrium physics. 

Conclusion 

In this review, we have showed that the 3-3-1 models 
are able to describe the cosmological evolution. The 3-3-
1 models contain the hybrid inflationary scenario and the 
first-order phase transitions. The inflation happens in the 
GUT scale, while phase transition has two sequences 
corresponding two steps of symmetry breaking in the 
models. The sphaleron rates are much larger than the 
Hubble constant. They are larger than the cosmological 
expansion rate at temperatures above the critical 
temperature and are smaller than the cosmological 
expansion rate at temperatures below the critical 
temperature. From these considerations, some bound on 
model parameters are deduced. 
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