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Abstract: The presented statistical model allows us to identify the degree of 

development of an epidemic starting from the observation of the number of 

deaths in the invested region, categorized by the age of the victims. 

Recognition of which cases are associated with the disease is not necessary, 

as this results from the comparison with data on deaths in pre-epidemic 

conditions. The treatment, which has analogies with consolidated models in 

the stochastic mechanics of brittle materials, allows associating parameters 

such as the level of epidemic, the probability of developing a pathology, and 

the age of the victims, with other notions well-known to structural engineers, 

such as the stress, the dependence from fracture-mechanics of macroscopic 

strength on material defects, the size-effect. Strong simplifying hypotheses 

are made; therefore, new comparisons are needed with the actual data, often 

not organized and difficult to find. However, for the most populated Italian 

regions, the model shows a good agreement with the theoretical predictions, 

allowing a quantitative estimate of the epidemic level and the risk assessment 

based on age. Further studies will show whether the knowledge in material 

science may be conveniently borrowed in the field of epidemiology and vice-

versa, to achieve mutual interdisciplinary progress. 
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Introduction 

The purpose of this article is to show how well-studied 

models in mechanics, in particular in the stochastic 

fracture mechanics of brittle materials such as glass, can 

be extended to a very different area of speculation to 

define, on a statistical basis, the effects of epidemics. The 

comparison with the mechanical model, governed by 

similar equations, will allow the establishment of an 

intuitive correspondence between concepts well known to 

engineers, such as the stress state in a body, with other 

quantities, like the level of the epidemic. Of course, this 

represents just a first attempt, because further studies are 

certainly needed to demonstrate whether the models in the 

field of materials science may be conveniently borrowed, 

mutatis mutandis, in the field of epidemiology and viceversa, 

thereby obtaining mutual interdisciplinary progress. 

Mathematical models have been used for almost a 

hundred years in the broad field of epidemiology. The 

most famous is certainly the SIR model, first formulated 

by Kermack and McKendrick (1927). Over the years, the 

basic concepts of the SIR model have been developed, 

with additions and changes, in more complex approaches 

(Beretta and Takeuchi, 1995; Shulgin et al., 1998; 

Bjørnstad et al., 2002; McCluskey, 2010). Whereas the 

SIR model and all its derivations define mathematical 

laws that describe how the virus is transmitted from an 

infected person to a healthy one, our approach is different. 

It starts from the manipulation of the number of total 

deaths, sorted by age, during a given period of observation 

in a certain territory, and through the comparison with the 

corresponding data in the same territory in pre-epidemic 

conditions, it provides a measure of the effects of the 

epidemic. The definition of an index of the epidemic, 

variable with time, could allow developing, a posteriori, a 

kinetic theory of the epidemic on a statistical basis, taking 

into account also the effects of the adopted countermeasures 

(locking down of the territory) and/or the availability of more 

effective cures, including a vaccine. 

A statistical theory for the strength of epidemics based on 

this rationale was presented by Pisano and Royer Carfagni 

(2020) and applied to interpret the development of the first 

wave of the spread of COVID-19 outbreaks in Italy in 

2020. Although the theory is very general, this case was 
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reputed of interest because Italy was the first country in 

Europe to be heavily affected by the contagion, at a time 

when very little was known about it and, consequently, 

effective countermeasures could not be taken 

immediately. The proposed theory made it possible to 

follow the free circulation of the epidemic in the national 

territory during the unconstrained phase, categorizing and 

quantifying the subsequent modification of the scenarios, 

as an effect of the lockdown, the improvement of medical 

treatments, and the increase in availability in the intensive 

care units. Our purpose, here, is to show and discuss how 

this theory has a surprising interpretation that comes, in 

particular, from the probabilistic approach that is used to 

define, on a statistical basis, the strength of glass for 

structural applications. Hence, this article is aimed 

primarily not at epidemiologists but at engineers. It can be 

considered just as a curiosity, or a divertissement, but we 

prefer to think that it can stimulate new ideas that arise 

from multidisciplinarity and the transfer of knowledge. 

Indeed, the followed procedure is inspired by 

stochastic mechanics in material science. In practice, 

albeit tentatively, we try to translate to another field of 

speculation basic concepts such as the macroscopic 

resistance of the material and its micro-mechanical 

interpretation, dictated by the probability that the body 

contains a crack that is critical for the applied state of 

stress, according to the laws of fracture mechanics. We 

have tried to grossly translate these concepts in the 

medical field so that the applied stress becomes the level 

of epidemic, the defect is now the pathology that can be 

developed in the individual, and the laws of fracture 

mechanics are the criterion that associates with every 

level of the epidemic the critical pathology that can lead 

to death. The life of the individual, appropriately re-scaled 

to take into account factors such as the genetics of the 

population, the quality of life and environment, the 

efficiency of the health system, and the gender, are 

associated, in the mechanical interpretation, with the 

dimensions of the body being studied. The larger the 

body, the greater the possibility of finding cracks of size 

critical for the applied stress; likewise, the longer the life, 

the greater the probability of developing pathologies 

critical for the level of the epidemic. This is a 

phenomenon usually referred to as the size effect in the 

language of material science. 

To be able to deal with the question mathematically, 

we start from hypotheses that, although moving away 

from reality, give a qualitative view, hopefully 

sufficiently approximated. The representation will 

certainly be coarse at this time, but if it is simple, it will 

be possible to conveniently apply the calculation and to 

check quantitatively, or at least qualitatively, if the results 

obtained correspond to the statistical data and, therefore, 

to verify the validity of the starting hypotheses, paving the 

way to new results. Our approach has been somehow 

inspired by the rationale used to simplify a complex 

scenario in the pioneering studies by Vito Volterra in 

mathematical biology. Volterra first analyzed the special 

cases of only two species that contend for the same 

nutrition (Volterra, 1926) and, successively, other two 

species, one of which grows because it finds unlimited 

nourishment, while the second would become extinct due 

to lack of nourishment, but still lives at the expense of the 

former one (Volterra, 1962). Here, the basic concepts of 

fracture and stochastic mechanics, and in particular the 

"weakest-link-in-the-chain" rationale, are applied 

concerning the very special case in which only one parameter 

represents the level of the epidemic and another parameter 

denotes the level of pathology developable by individuals. 

This is done on a statistical basis, to define another quantity 

that can measure the effects of the epidemic. A generalization 

of such a concept will be certainly possible, with potential 

extensions to other branches of medicine. The effects of an 

epidemic are often measured by counting the number of deaths 

(Housworth and Langmuir, 1974; De Brito et al., 2017; 

Mavalankar et al., 2008), but if we let ourselves be guided by 

the methods of the mechanics of materials, we are led much 

further than where qualitative reasoning and empirical laws, 

based on data manipulation, could bring us, thanks to the 

formulation of precise equations and the definition of a single 

index, which accounts for both the spread of the epidemic and 

the capability of treating the consequent diseases. 

Our findings do not contradict the results of the 

observations; indeed, they seem in perfect agreement with 

the results obtained by processing the statistical data relating 

to the deaths that were recorded during the COVID-19 waves 

that occurred in Italy in 2020. Concerning the data 

manipulated (Pisano and Royer Carfagni, 2020), here the 

analysis is extended to the second wave concerning the most 

populated regions of Italy, regions that are very different in 

terms of expectancy of life and level of the epidemic. 

Probabilistic Mechanics of Glass 

The model here described is inspired by the stochastic 
mechanics of brittle materials, based on general balance laws 
dictated by classical fracture mechanics. In particular, it is 
based on the “weakest-link-in-the-chain” rationale, proposed 
by Weibull (1939) to statistically interpret the variability in 
the population of macroscopic strengths observed in brittle 
materials like glass and ceramics. 

The original Weibull theory did not provide a formal 

correlation between the statistical theory of the strength of 

materials and the balance laws specific to fracture 

mechanics, expressed by a specific fracture criterion. 

Freudenthal (1968) inferred the connection between the 

depths of an existing flaw in the body, schematized as 

micro-cracks, and the statistical distribution of 

macroscopic strengths; however, the relationship between 

the orientation of micro-cracks and applied stress through 

a fracture criterion was not explicitly considered. This was 
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done later on by Batdorf and Crose (1974). According to 

this model, the effect of the distribution of the sizes of the 

existing flaws is assumed in terms of a critical component 

of stress normal to the crack axis, and the probability that 

the orientation of the crack is such that the fracture 

criterion is satisfied is explicitly taken into account. Another 

model was formulated by Evans (1978), according to which 

an elemental strength distribution is established from test 

data. Then, through considerations about the crack 

orientations, the shear, and the normal stresses acting at the 

crack, the elemental distribution is correlated through a 

fracture criterion to different stress states. 
Starting from the works by Freudenthal (1968) and 

Batdorf and Crose (1974), a micro-macro approach has 
been recently proposed by two of the authors (Pisano and 
Royer Carfagni, 2017), to associate the failure stresses with 
the distribution of crack sizes. Differently from the model by 

Batdorf and Crose, the construction of the statistical model 
for glass strength does not start from the distribution of 
cracks in terms of critical stresses, but in terms of depths: 
This allows for correlating the variations in the distribution 
of the macroscopic strengths with the crack scenarios. 

The Micro-Macro Approach 

The macroscopic strength of glass elements is governed 
by the presence of micro-defects laying on their surfaces. 
Such defects can be modeled as thumbnail micro-cracks, 
whose plane is orthogonal to the glass surface. To 

statistically represent the population of defects, following a 
consolidated theory (Freudenthal, 1968), one can consider 
(Pisano and Royer Carfagni, 2017) that the area A of the glass 
surface is ideally divided into Representative Area Elements 
(RAE), referred to as ∆A. The size of the RAE is compatible 
with the typical size of the cracks, in the sense that, while 

observing the actual defects commonly present on the 
surface of commercial glass, ∆A represents the element of the 
coarser mesh that can be drawn on the surface, in such a way 
that at most one crack is included in each element. Inspecting 
the glass surface with a microscope, it is possible, at least in 
principle, to measure in each RAE the size δ of the micro-

crack there located. One can thus calculate the corresponding 
statistics, i.e., the probability of finding in one ∆A a crack of 
size δ. We assume that the RAE is much smaller than the area 
of the glass element (∆A << A) but, at the same time, it is 
much larger than the size of the crack it hosts (∆A >> ), so 
the stress concentration produced by the crack of one RAE 

has a negligible effect on the cracks belonging to the 
neighboring RAEs. In this respect, the effects of the stress on 
each crack are similar to those that would occur if the crack 
were in an infinite medium. 

Glass breakage occurs when one dominant crack 

grows unboundedly in the stressed body: The larger the 

crack size δ, the lower the level of the action necessary to 

produce failure. In the theory of epidemiology, as it will 

be explained in the section “The Weibull theory in 

epidemiology”, the parameter δ plays the role of the level 

of severity of the existing pathology developed by 

individuals, which is associated with the possibility of 

leading to death. 

It is logical to assume that while the bulk of the 

distribution occurs for cracks of fairly small size, there is 

a small number of cracks of size much higher than the 

average value, which leads to a very long right-hand-side 

tail. This can be interpreted by a power law distribution of 

the Pareto type, i.e.: 

 

( )Ap C   −

 =  (1) 

 

where C is a normalization constant and α > 1 is the 

scaling parameter. In general, the constant C may depend 

upon the time interval ∆t (C∆t = f(∆t)) during which the 

stress is applied, because of a subtle phenomenon usually 

referred to as subcritical crack propagation or static 

fatigue (Wiederhorn and Bolz, 1970), according to which 

cracks can slowly grow omothetically over time in a way 

proportional to the applied stress. 

Since the Pareto distribution diverges for δ → 0, the 

normalization constant C∆t is found by imposing that there 

is a minimum crack size δmin,∆t, possibly dependent on ∆t, 

representing the size of physiological defects in glass, 

naturally present from industrial manufacturing. 

Consequently, C∆t assumes the form: 
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Thus, the probability density function becomes: 
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from which the cumulative probability function is derived 

in the form: 
 

( )
( )

( )

1

min,

1/ 1
,

t

AP A with
A






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

−



 −

 
=  = 

 
 (4) 

 
It is interesting to remark that the strength of glass is 

governed by large cracks so what is important is the right-

hand-side tail of the distribution. Consequently, δmin,∆t 

may be considered as a material parameter, not 

necessarily associated directly with the minimum 

(physiological) size of the flaw hosted in the RAE, whose 

importance consists in the fact that, in the expression (4), 

it analytically characterizes the statistics of large cracks in 

the asymptotic limit δ → ∞. 

The probability of finding in the RAE a crack ≤ δ is equal 

to ( ) ( )1A AP P  

 = − . Since no crack larger than δ is found 

in the whole area A if and only if none of the RAEs ∆A 
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contains a crack greater than δ, the probability PA
≤ (δ) of 

finding a crack ≤ δ in A is equal to the product of the 

probabilities that the crack size is ≤ δ in all the RAEs that 

form A, whose number is A/∆A. By taking the limit for ∆A/A 

→ 0 and recalling that the probability PA
≤ (δ) of finding a 

crack ≥ δ is PA
≥ (δ) = 1 − PA

≤ (δ), one finally obtains: 

 

( )
1

1 expAP A








−





  
= − −  

   

 (5) 

 

This is the classical two-parameter Weibull 

distribution (Weibull, 1939). The area A of glass enters in 

this expression and provides a phenomenon referred to as 

size-effect in the mechanics of materials: the higher the 

size A of the glass element, the higher the probability of 

finding a crack larger than δ. As it will be discussed later 

in the section “The Weibull theory in epidemiology”, the 

counterpart of the size of the material body in the Weibull 

theory of epidemiology is the nominal life of the 

individual. The longer the nominal life, the higher the 

probability of developing a severe pathology. 

Under bending, the tensile stress varies linearly in the 

thickness of the plate, but since the crack depth δ is in 

general much smaller than the thickness, we can repute 

that the opening stress remains almost constant in the 

whole crack. It is usually assumed that cracks in brittle 

materials open in mode I. According to Linear Elastic 

Fracture Mechanics (LEFM), the crack opens when the 

critical value KIc, which is characteristic of the material, 

is attained by the Stress Intensity Factor (SIF) KI = σ⊥Y δ1/2 

in mode I, where σ⊥ is the component of stress at the right 

angle with the crack plane and Y is the geometric factor 

that takes into account the crack shape. This is equal to 

Y = 2.24/ π for a semicircular thumbnail crack of radius δ. 

Hence, collapse occurs when: 

 
1/ 2

IcK Y ⊥=  (6) 

 

This expression is identical, apart from the exponent 

of δ, to the death criterion that will be adopted in the 

section “The Weibull theory in epidemiology” for the 

theory of epidemiology. 

Assume now that the glass surface A is stressed by a 

uniform equibiaxial state of stress (σ, σ). Such a condition 

is approximately verified when the glass plate is tested in 

the co-axial double-ring apparatus (Pisano and Royer 

Carfagni, 2016) and it represents the most severe 

condition, since only in this case, the probability that the 

maximum principal stress is at a right angle with the 

critical crack is 100%. Thus, in this condition σ⊥ = σ. 

Hence, for any given σ, the probability of failure equals 

the probability of finding a crack of size greater than δ = 

(KIc/(Y σ))2. Then, substituting Eq. (6) into (5) one obtains: 

( ) ( ) 0 1/ 2

0

1 exp , 2 1 ,

m

F Ic
A

K
P A withm and

Y


  

 

  
 = − − = − = 
   

 (7) 

 

where m and η0 are the shape and scale parameters, 

respectively. This is again a two-parameter Weibull 

distribution. 

Remarkably, since glass failure occurs when just one 

crack reaches its critical condition, the RAEs play the role of 

the rings of the chain: the weakest ring is the one that breaks 

in a chain under tension (Weibull, 1951) and breakage of one 

ring provokes failure of the whole chain under tension. 

Hence, following the weakest-link-in-the-chain rationale, 

kept fixed the size of the rings, the longer the chain, the 

higher the probability of finding a weak link (size effect). 

The Weibull Theory in Epidemiology 

A statistical model is now presented that, starting from 

the definition of nominal life, assesses the probability of 

finding a pathology of assigned level in the lifetime. 

Death is correlated with the development of a pathology 

that is critical for the level of the epidemic. An intuitive 

interpretation of the model can be obtained in the 

language of fracture mechanics since it is governed by the 

same equations that interpret the strength of brittle 

materials on a statistical base. 

Real and Nominal Life and Probability of 

Developing a Pathology 

The life of a person may be considered as a chain 

composed of lifetime segments, representative of the 

reference lifetime scale. One may think, for example, that 

each solar year, or any submultiple of it, represents a lifetime 

segment, i.e., one of the rings that add up to one another 

during a lifetime. However, this view may be too simplistic. 

Alvin Toffler (1928-2016), an American writer, once 

said: “It is mathematically demonstrable that the concept 

of time is closely related to age: time passes faster for old 

people". This quote introduces the idea that the usual time 

unit, for example, the solar year, cannot represent the 

reference scale to measure the aging process throughout the 

whole human life. In other words, if one thinks of a linear 

process, where life is the mere sum of nominal life segments, 

each of which can be associated with the same physiological 

increase of "damage" in the human body, then the number of 

segments contained in one solar year of age should be higher 

for an old person than for a young person. 

Let ∆An denote the reference nominal life segment. 

The real age Ar, expressed in several real time-segments 

∆Ar, can be related to nominal age An, equal to the number 

of ∆An. In general terms, this is done through a re-scaling 

law of the type: 
 

( )n rA F A=  (8) 
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The analysis of the data corresponding to the Italian 

COVID-19 epidemics has suggested, as will be 

demonstrated in the following, to consider the scaling law 

described in the following. 

Setting ∆Ar = 1 solar year, the nominal life An is 

expressed in several nominal years ∆An according to a 

function F(Ar) of the form: 
 

1 2

45 70n r r rA A A A
 

+ +
= + − + −  (9) 

 

with 1, 2 > 0, where Ar is the real age now expressed in solar 

years and + denotes the positive part function, which takes 

as input any real number and outputs the same number if it is 

nonnegative and 0 if it is negative. This means that there are 

two step-changes in life, the first one at 45 solar years and the 

second one at 70 solar years of age, beyond which, roughly 

speaking, “each year counts more”. In general, the re-scaling 

law F(Ar) depends upon the race of the population, the 

genetic heritage, the quality of environment and life, and the 

efficiency of the national health system and may be different 

between men and women. 

Elizabeth Barrett Browning (1806-1861), an English 

poetess of the Victorian era, once said: “Parity of years, a 

woman is always younger than a man”. We may re-

interpret this phrase by saying that, parity of solar years 

of age, the nominal age for a woman is lower than for a 

man. However, we will not make such a distinction here 

and we will assume that such a rescaling law holds, on 

average, in the considered ensemble, represented by the 

population of an Italian region or province. 

Let us suppose that the level of pathology that a person 

can develop can be synthetically measured by only one 

parameter δ. Observe that, in this simple version of the 

model, pathologies are not classified by typology and δ 

represents a general measure of the level of any pathology 

that can affect people. The model could be easily extended 

to consider different-in-type pathologies by assigning 

different Pareto functions to different types of pathologies. 

We assume that the probability to develop δ, in a given time 

interval ∆t of observation, depends upon the number of 

reference life-segment An/∆An and that serious pathologies 

(high δ) are less probable to be achieved than mild 

pathologies (low δ). One assumes that a universal statistical 

law `a la Pareto does exist, of the type: 

 

( ) , 1
n

tA
p C with  −


=   (10) 

 

which is the counterpart of Eq. (1) and represents the 

probability density function to develop the pathology of 

level δ in the time interval ∆t, concerning the single life-

segment ∆An. Following this rationale, ∆An represents a 

normalization factor for the natural human degradation 

due to age. This expression should have a universal value, 

valid for every person, whereas the distinction in terms of 

race, genetics, quality of environment and life, and 

gender, has been already taken into account through the 

re-scaling (8). Recall that the Pareto distribution is heavy-

tailed. Hence, it respects the desired qualitative property, 

i.e., the probability decreases with the severity of the 

pathology δ. 

The normalization constant C∆t is given by Eq. (2). Now, 

δmin,∆t represents the physiological pathology level that is 

always achieved in the nominal life-segment, irrespective of 

any other factors, possibly dependent upon the duration of 

the observation ∆t. This may represent the physiological 

minimal aging for the human body since no person can have 

an infinite life, in which no disease is developed. 

By following the same rationale adopted in the section 

“Probabilistic mechanics of glass”, one obtains the 

probability of developing a pathology greater or equal 

then δ in ∆An in the form: 
 

( )

1 1

min,

min,

/

n

t

nA
t

P A

 

 


 

− −






   
= =      
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 (11) 

 
where: 
 

( )
( )1/ 1

1

nA



−

=


  (12) 

 
Observe that δmin,∆t carries the dependence upon the 

time of observation ∆t, but this is not emphasized in the 

sequel, to simplify the notation. 

The probability of finding a pathology of a level lower 

than  is ( ) ( )1An AnP P  

 = − . In the whole nominal life 

An, composed by An/∆An nominal reference segments, the 

probability of finding a pathology of a level lower than δ 

coincides with the product of the probabilities of finding 

a level lower than δ in any one of the constituent ∆An. 

Therefore, one can write: 
 

( )

/ /1 1

min, min1 1

n n n n

n

A A A A

t n
n nA

n

A
P A A

A

 
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

 

 − −





         = −  = −             

 (13) 

 
Such an expression can be simplified under the 

hypothesis that the ratio between An and An is much lower 

than one. Assuming that such ratio tends to zero and observing 

that    
1/

0
lim 1 exp

U

U
aU a



→
+ = , one obtains: 

 

( ) ( )
1

min/
1 1 exp

n n
nA A

P P A



 
 



−

 
  
 = − = − −  
   

 (14) 

 

This is a two-parameter Weibull distribution (Weibull, 

1951) carrying a size effect in terms of nominal age An, 

whose significance will be discussed through the mechanical 

interpretation, set forth in the section “Analogies with the 

statistical model for brittle materials’ strength”. 
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Probability of Death as a Function of Age and Level 

of Epidemic 

Another assumption of paramount importance is that 

the "force" of the epidemic can be measured by only one 

parameter σ. This is again a great simplification, but it is 

not difficult to consider the contemporary action of more 

than one type of epidemic, by introducing other 

parameters and/or the uneven distribution of the epidemic 

in the territory, by considering small sub regions where it 

is presumably constants and then summing the effects. In 

any case, reference to one uniform level of the epidemic 

is useful to illustrate the method. 

Death occurs when a function representing the 

combination of the level of epidemic and the level of 

pathology reaches a critical value of Kcr. A high level of 

epidemic provokes death at a low level of pathology and vice-

versa. We conjecture that there is a death criterion represented 

by a function G (·,·,·), such that death occurs when: 

 

( ), , 0n crA K  − =  (15) 

 

This is the most general case, where we consider a 

further dependence upon An, to take into account that the 

effect of an epidemic might be, e.g., more aggressive on the 

elderly than on young people. Given the nominal age An, this 

criterion associates any level of epidemic σ with the 

corresponding critical level of pathology δ/δmin, i.e., the 

pathology beyond which death occurs, for a given level of 

the epidemic. Such a criterion implicitly defines the function: 

 

( ) ( )( )min/ , , , , 0n n n crg A such that g A A K    = − =  (16) 

 

In general, it is logical that for any nominal age An, the 

function g(An) is monotone decreasing, because the higher 

the level of epidemic, the lower the corresponding critical 

pathology. Moreover, requiring that when σ → 0 it takes 

a pathology (δ/δmin)cr → ∞ to cause death, one has the 

further condition: 

 

( )0

1
lim 0

, ng A →
=  (17) 

 

Because of the aforementioned properties of g(An), given 

the level of epidemic σ, at the nominal age An, the probability 

of death coincides with a probability of developing a 

pathology whose level is higher than or equal to δ/δmin = g(σ, 

An). Substituting in (14), one obtains: 

 

( ) ( )( )
( )

1

, 1 exp
,n n

D

n nA A

n

P P g A A
g A




 



−



  
  = = − −
  

   

 (18) 

In the simplest case, as it will be done in the section 

“the case of the COVID-19 epidemics in Italy”, one can 

assume that g(σ, An) does not depend on An and that the 

monotonicity property, together with the limit (17), can be 

interpreted by a power law function. Therefore, the 

criterion (15) can be re-written in the form: 

 
1/

min min

0, cr
cr

K
K Y

Y

 

 


  

   
− =  =   

  
 (19) 

 

with β > 0. Observe that, all other things being equal, the 

higher is β, the higher the critical pathology for the same 

level of epidemic σ. Therefore, the parameter β represents 

our capability of treating the disease caused by the 

epidemic, which may change during the critical phase 

thanks to the availability of more and more effective 

treatments. With no changes in the ability at curing the 

disease (δ) and in the level of the epidemic (σ), the effect 

of the epidemic increases with Y, which can represent the 

spread of the epidemic. Here, it is important to outline 

that, since δ/δmin ≥ 1, the product (Y σ)/Kcr < 1. 

Hence, (18) can be re-written in the simplified form: 
 

( )
( )1

1/

0

1 exp 1 exp
/n

m

D

n nA

cr

P A A
K Y

 



 


 

−      
   = − − = − −   
        

 (20) 

 
where we have defined m = (α−1)β and η0 = Kcr/(Y η1/β). 

Again, η0 carries the dependence upon the time of 

observation ∆t through η, as per (12). 

The probability of death can be expressed in terms of 

real-life Ar by using the re-scaling law (8). Substituting in 

(20), one obtains: 
 

( ) ( )
0

1 exp
n

m

D

rA
P F A






  
 = − −  
   

 (21) 

 

Remarkably, both (18) and (20) again represent two-

parameter Weibull distributions (Weibull, 1951), for 

which m and η0 represent the scale and the shape 

parameters, respectively. Statistical laws of this type are 

commonly encountered in materials science. 

The present approach could also cover the case in 

which the level of epidemic σ varies within the observed 

territory, or the epidemic is more lethal in a restricted 

category of population, but this is not done here. 

Analogies with the Statistical Model for Brittle 

Materials’ Strength 

There are remarkable affinities, schematically shown 

in Fig. 1, between the model just presented and the 

statistical models used to describe, starting from a micro-

mechanical motivation, the population of macroscopic 

strengths in the glass. 
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First, glass breakage occurs when one dominant crack 
grows unboundedly in the stressed body: The larger the crack 
size δ, the higher the attitude of the body to break under 
applied loads. Likewise, in the epidemiological model, the 
parameter δ plays the role of the level of severity of the 
pathology developed by individuals, which is naturally 
associated with the possibility of leading to death. It is logical 
to assume that while the bulk of the distribution occurs for 
fairly small sizes, there is a small number of cracks of size 
much higher than the average value, which leads to a very 
long right-hand-side tail. This can be interpreted by the 
power law distribution of the Pareto type (1). The same 
assumption is made for the level of severity of pathology. 
Most of the pathologies can be considered mild, but there 
exist some pathologies that are much more severe than 
others. Hence, the probability density function for the 
crack size δ in ∆A (1) has the same form (10), where 
the nominal lifetime segment ∆An is substituted by the 
RAE ∆A. It is of interest to outline that, both the 
normalization constants of the Pareto functions may 
depend upon the time interval ∆t, which represents the 
load duration in the case of glass strength, and the 
observation time in the theory of epidemiology. 

The area A of the glass surface enters in the Weibull 

expression for the failure probability (7) and provides a 

phenomenon referred to as size-effect in the mechanics of 

materials: the higher the size A of the glass element, the 

higher the probability of finding a crack larger than δ. In 

the theory of epidemiology, the counterpart of the size of 

the material body is the nominal life of the individual. The 

longer the nominal life, the higher the probability of 

developing a severe pathology. Hence, the nominal-life 

segments represent the rings in the chain of life, and the 

size effect in terms of nominal age An is a characteristic of 

the Weibull distribution (18), describing the probability of 

death at An under an epidemic of level σ. 
The expressions for the critical conditions, i.e., the one 

for the critical SIF in mode I (6) and the death criterion 
(19), are identical, apart from the exponent β of δ: In 
LEFM β = 2, whereas in the section “Probability of death 
as a function of age and level of epidemic” the parameter 
β was not assigned, to let this parameter represent another 
degree of freedom, associated with our capability at 
treating the disease. In any case, the mechanical 
interpretation of the level of epidemic σ is that it 
represents the stress acting in the material, i.e., the cause 
that provokes the critical growth of cracks and, hence, the 
breakage of the body. This correspondence highlights the 
relationship between the assumed level of epidemic and 
the critical level of pathology. 

 

 
 
Fig. 1: Analogies between the statistical model for brittle materials' strength and the effect of an epidemic. (a) The depth of the cracks 

δ governs glass strength, while the level of pathology δ governs the risk of death; (b) σ is the effect of the external action in the 

model for glass strength while it is the intensity of the action of the epidemic in the theory of epidemiology; (c) the size effect 

is represented by the size of the glass plate in mechanics and by the length of life in epidemiology. A glass plate composed of 

4 ∆A and a person of nominal age 4 ∆An are represented as chains of 4 links, while a glass plate composed of 9 ∆A and a person 

of nominal age 9 ∆An as chains of 9 links. The resistance of the links is of stochastic nature 
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However, the state of stress may not be uniform 

equibiaxial in the glass plate. This case has similarities with 

the condition in which the epidemic is not uniformly spread 

throughout the body. Moreover, one should consider that the 

effect of the epidemic on each individual may depend on 

other factors. In the mechanical analogy, for example, the 

crack opening stress σ⊥ in (6) is the normal component of 

stress in the crack plane: the state of stress is represented by 

a tensor field and the orientation of the crack for the principal 

direction of tensile stress plays a dominant role. In a more 

refined study, also the level of the epidemic could acquire 

more structure, perhaps representable with a tensorial field, 

but such consideration can only be conjectural at this time. In 

any case, it may be useful to recall how the case of varying 

stress is treated in the mechanics of brittle materials, with the 

only aim to provide an example of what might be the 

consequences in a statistical model of epidemics. 

To this aim, observe that Eq. (6) establishes a one-to-

one correspondence between the stress σ⊥ = σcr and the 

size of the crack δcr = [KIc/(σcrY )]2 that is critical for that 

stress. Hence, the probability ( )A crP 

  of finding in ∆A a 

critical stress ≤ σcr is equal to the probability of finding a 

crack of size equal to or higher than δcr. Substituting in 

(11) after setting An = A, one obtains: 

 

( )
( )2 12

Ic
A cr A

cr Ic

YK
P P A

Y K




 



−

 

  ⊥

    
 = =           

 (22) 

 

The probability of finding in the RAE a critical stress 

comprised between σcr and: 

 

( )cr cr A cr cr

cr

d
d is P d

d
   





+  

 

The number of RAEs composing the area A is again 

A/∆A but, since the stress is variable, it is necessary to 

distinguish each element ∆Ai, i = 1...A/∆A, on basis of the 

state of stress acting there. Let Ω∆Ai(σcr) represent the 

angle containing the normals to all the possible crack 

planes for which the normal component of stress, in ∆Ai, 

is higher than the critical value σcr (Batdorf and Crose, 

1974), with 0 ≤ Ω∆A(σcr) ≤ π. Assuming that there is the 

same probability for any crack orientation, the probability 

of failure for ∆Ai in the interval (σcr,σcr+dσcr) reads: 

 

( ) ( )
i

i

cr A crAF

crA

cr

dP
dP d

d

 


 






=  (23) 

 

Consequently, the failure probability of ∆Ai is given by: 

 

( ) ( )
0

i

i

cr A crAF

crA

cr

dP
P d

d

 


 

 




=   (24) 

and the probability of survival is 1
i i

S F

A A
P P
 

= − . At the 

level of the whole area A, the survival probability is 

equal to the product of the survival probabilities of the 

elements, that is: 

 

( ) ( )/

0
0

1 i

A A
cr A crAS

A cr

i cr

dP
P d

d

 


 


 

=

 
 = −
 
 

   (25) 

 

In this expression, the variability of the state of stress 

in the body is taken into account by the different values 

that Ω∆Ai(σcr) may assume in each ∆Ai. 

Equation (25) can be specialized and simplified once the 

state of stress is known. If this is uniform, equibiaxial, and 

equal to σ, one has that Ω∆Ai(σcr) = π when σcr ≤ σ and Ω∆Ai(σcr) 

= 0 when σcr > σ. Following the procedure illustrated in 

Section 3.1 of (Pisano and Royer Carfagni, 2017), one 

obtains again (7). In the most general case, reasoning as in 

(Pisano and Royer Carfagni, 2017), one concludes that the 

probability of failure for the glass element of area A under 

generic tensile stress can be written in the general form: 
 

( ) ( )max
max 0 1/ 2

0

1 exp , 2 1 ,

m

F Icr
Aeff eff

K
P A m

Y


  

 

  
 = − − = − = 
   

 (26) 

 

where σmax is the maximum tensile component of stress 

throughout the body and Aeff is the “effective area”, i.e., an 

appropriate rescaling of the area A to take into account the 

variability of stress from point to point and the fact that it 

is not equibiaxial. 

It is not clear, at the time of the present writing, how 

this re-scaling towards the effective area could be 

translated into a statistical theory of epidemics. In any 

case, the analysis suggests that when the spreading of the 

epidemics in the territory is not uniform and the effects on 

the population depend on factors that are not considered 

by the simple criterion (19), an expression of the type (18) 

is still valid, but the nominal age An should be rescaled, 

while σmax should represent a measure of the maximum 

level of the epidemic within the territory. 

The Case of the COVID-19 Epidemics in Italy 

Between February 1st and November 30th, 2020, 

1.651.229 COVID-19 cases have been diagnosed in Italy 

(https://www.epicentro.iss.it/coronavirus). The epidemic 

spread scenario can be schematized in three phases. The first 

phase (first wave), from February to the end of May 2020, 

was characterized by a very rapid spread of cases and deaths 

and by a strong territorial concentration in the North of the 

country. A transition phase occurred in the summer season, 

from June to mid-September, when the spread was very 

limited. By starting from the end of September, the cases 

have quickly increased again (second wave). 

https://www.epicentro.iss.it/coronavirus
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Most of the models that consider the evolution of 

epidemics are based on the number of infected people and/or 

deaths from contagion (Becker and Dietz, 1995; Fraser, 

2007; House and Keeling, 2008; Goldstein et al., 2009; 

Ross et al., 2010). However, the identification of all cases 

and deaths attributable to a new virus is very difficult. In the 

observation period, the official number of deaths induced by 

COVID-19 in Italy was 57.647, while the difference between 

the total number of deaths in 2020 and the average number 

in the same months in the years 2015-2019 was about 84.000. 

This underlines the importance of using objective 

parameters, such as raw mortality, to estimate the effects of 

epidemics and monitor their evolution. 

The Relative Index of Epidemics 

The expression for the probability of death (21), by 

recalling that η0 = Kcr/(Y η1/β) and that η is given by (12), 

can be re-written in the form: 

 

( )
( )

1 exp
r

m

rD

A

n cr

F A Y
P

A K




  
 = −  
   

 (27) 

 

that, after some simple analytical steps, becomes: 

 

( )
( )

( )
1

ln ln ln 1 ln
1 ,

r

D
n Icr

F A Y

A KP A


 



     
   = + −  

−        

 (28) 

 

which represents a straight line Z = X + Q in the plane 

( ) 
1

ln ln 1 lnD

ArZ P X
−

 = − − =  [F(Ar)/∆An], referred to as 

the epidemic Weibull plane. This is the counterpart of the 

Weibull plane (Weibull, 1939), commonly used for the 

graphical estimation of the Weibull parameters (Pisano and 

Royer Carfagni, 2015). Hence, according to the proposed 

theory, measured mortality rates, ordered by nominal age, 

should be aligned in the epidemic Weibull plane, which 

represents the criterion for the estimation of the parameters 

γ1 and γ2 of the renormalization law (2). The procedure consists 

in finding the renormalization law that provides the best fit to 

the experimental points in one particular state of the epidemic. 

Then, it must be verified that the same normalization provides 

a reasonable alignment in the other states under study. 

The intercept of the interpolation line (28) with the 

ordinate axis in the epidemic Weibull plane is given by: 

 

( )1 ln
cr

Y
Q

K


 

 
= −  

 
 (29) 

 

In general, Q < 0, since α > 1, β > 0, and Y σ/Kcr < 1. 

Remarkably, the higher the intercept Q is, the higher the 

death rate among the elderly compared to the young turns out 

to be and vice-versa. Hence, the proposed model accounts for 

the distribution of the deaths and, through the intercept Q, for 

the shifting in mortality rates between age classes. Recall that 

the values for α and Kcr, which is a measure of human 

´´toughness", are not affected by the level of epidemics. The 

limit conditions where the whole population dies from the 

epidemic is reached when the value of the product σ · Y is 

such that the ratio Y σ/Kcr approaches the unit value and Q 

tends to become null. In another word, in this case, the 

minimum level of damage δ = δmin is sufficient to cause death. 

The inverse of the absolute value of Q, i.e., −1/Q, might 

be considered an effective measure of the level of epidemics, 

but a quantitative estimate can only be obtained in relative 

terms. Let the reference configuration, labeled as "0", be 

characterized by the parameters β0, Y0, σ0, while the 

configuration under study, labeled as "1", by β1, Y1, σ1. Once 

the best-fit line in the epidemic Weibull plane for the 

configurations “0” and “1” and the respective intercepts on 

the ordinate axis Q0 and Q1 are determined from the analysis 

of the mortality data, assuming that α and Kcr are the same for 

both configurations, the “epidemic ratio” r: 
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cr
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 
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   
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−    

   
  

 (30) 

 

can represent a relative measure of the strength of the 

epidemics. Then, as a measure of the distance of r from the 

unit, the "relative index of the epidemic” Ie is defined as: 

 

( ) 0 1

1

100 1 100e

Q Q
I r

Q

−
= − =  (31) 

 

where factor 100 is introduced to obtain numbers that are 

easier to read. 

Hence, Ie > 0 indicates that the "strength" of the 

epidemic is higher in situation "1" than in situation "0". 

Of course, Ie will reach negative numbers when the 

epidemic is milder in the configuration under analysis than 

in the reference configuration. If there are no changes in the 

ability at curing the disease, i.e., if β0 = β1, an increase of Ie 

could be due to a major spread of the epidemic (increasing 

Y) or to an increased lethality of the virus (increasing σ) 

and vice-versa. Changes in the capacity of curing diseases 

can greatly alter Ie, i.e., the effects of the epidemic, when 

Y1σ1 = Y0σ0; e.g., an effective vaccine would lead to an 

increase of β accompanied by a decrease of Ie, whereas 

exceeding the capacity of intensive care units would lead 

to the opposite effect. 

Observe that it is customary to consider excess 

mortality as an effective indicator of the impact of an 

epidemic. However, this cannot account for the 

demographic structure of the population and the 

distribution of deaths by age. These represent the main 
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conceptual differences between excess mortality and 

the relative index of epidemics. In particular, the theory 

explicitly considers the greater aptitude of the elderly 

to develop life-threatening diseases during epidemics. 

Hence, equal variations in the number of deaths in the 

young and in the elderly represent different signs of the 

impact of an epidemic, which cannot be captured by 

excess mortality. 

First Wave 

Contagion in Italy officially started at the end of 

February: ten municipalities in the province of Lodi 

(Lombardia region) and one in Padova (Veneto region) 

were quarantined since February 24th. National quarantine 

was imposed on March 9th, while the release of the 

lockdown gradually started on May 4th. The evolution of 

the relative index of epidemics is here analyzed in the 

most populated (more than 2 million inhabitants) Italian 

regions, which are Campania, Emilia Romagna, Lazio, 

Lombardia, Piemonte, Puglia, Sicilia, Toscana, and 

Veneto, geographically located as in Fig. 2. 

From January to June, setting the single month as a 

unit of time ∆t, the renormalization law An = F(Ar) in ante 

COVID-19 conditions, representing the configuration of 

comparison (configuration “0”), was derived from the 

averages of the number of dead, sorted by age, in the same 

periods of the years from 2015 to 2019. For all the Italian 

municipalities, these data are available online at 

https://www.istat.it/it/archivio, while the total population at 

the beginning of each month at http://demo.istat.it, together 

with the demographic structure referring to a certain solar 

year. The solar years of age were grouped in nine sets (Ar = 

{0 − 10,10 − 20,...,80 − 90,> 90}) and the ages at the center 

of the intervals and 100 for ages higher than 90 were assumed 

to be the ages representatives of the groups. The ratios 

between the number of deaths and peer population give the 

probabilities of death for each i-th set, which were averaged 

in the period 2015-2019 for each considered month. 

Recall that the theoretical scaling between death 

probabilities at any two real ages is given by Eq. (27). 

Then, parameters γ1 and γ2 of (9) for each considered 

month were calibrated by equating measured and 

expected death probabilities given by Eq. (27) at the point 

Ar,2 = 45. The assumed form of renormalization turned out 

to be accurate in all the regions under analysis. For the 

sake of example, the results of calibration for Campania 

are shown in Fig. 3. 

 

 
 
Fig. 2: Geographic location of the various Italian regions under 

investigation 

 

 
 
Fig. 3: Observed probability of death 

r

D

A
P  in the month as a function of real age Ar. Comparison with the theoretical predictions. Region 

Campania in the configuration “0” (average of 2015-2019) for March. (a) Left-hand-side branch; (b) right-hand-side branch 

https://www.istat.it/it/archivio
http://demo.istat.it/
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The agreement between measured probabilities of 

death and theoretical expectations is very good, for all the 

considered regions, apart from the death probabilities 

associated with ages much lower than 40 years. This 

might be because these are strongly sensitive to small 

variations in the number of deaths. Furthermore, the 

probability of deaths in the range of 0-10 is always higher 

than the theoretical predictions because deaths at birth are 

not associated with natural degradation of the human body 

and hence not covered by the proposed theory. The same 

is true for deaths from non-epidemic causes, such as road 

accidents, drugs, or homicides. 

Then, the value of the intercept Q in the configuration 

“0” (Q0) is graphically obtained from the line of the type 

Z = X + Q (28) that best fits the measured points in the 

epidemic Weibull plane Z = lnln{[1 − PD(Ar,σ)]−1} − X = 

ln[F(Ar)/∆An]. 

Passing to the configuration “1”, i.e., the periods of 

observation in 2020, the effects of the epidemic are gathered 

in the product Y σ, since parameters γ1 and γ2 do not vary 

according to the theoretical model. Again, the number of 

deaths sorted by age and the total population are available at 

https://www.istat.it/it/archivio and http://demo.istat.it, 

respectively. Then, the graphical procedure is repeated to 

obtain the value of the intercept Q1 in the configuration “1”. 

For the sake of illustration, the graphical regressions 

associated with the Campania region in march for the 

configurations “0” and “1” are shown in Fig . 4(a) and 

4(b), respectively. Notice that the fitting is very good, 

apart from the lower age classes, for which the 

mortality rates are not well captured by the theory for 

the reasons explained above. The good fitting confirms 

the goodness of the theory. 

Finally, the relative index of epidemic Ie has been 

calculated from (31). The monthly variation of this index, 

within the six months corresponding to the first wave of 

COVID-19, is shown in Fig. 5. 

March was the month of the epidemic peak in most of 

the considered regions, while the peak was reached in 

April in Piemonte, Puglia, and Toscana. Lombardia was 

by far the most infected region, while the epidemic was 

mild in the central regions (Lazio, Toscana) and very 

limited in the south (Campania, Puglia, Sicilia). This was 

mainly the consequence of the lockdown 

countermeasures, which were simultaneously imposed on 

the whole national territory. In the North, where the 

epidemic had already started, the lockdown was only 

partially effective; in the South, where the epidemic had 

not yet spread, the timely activation of the lockdown 

prevented the diffusion of the infection. 

Observe that there are negative values for Ie in all the 

considered regions in January, February, and June; in 

May, Ie is greater than one in Lombardia only. A negative 

value indicates that the severity of the epidemic in 

configuration "1" (2020) is lower than in configuration 

"0" (previous years). Recall that the theory does not 

consider COVID-19 as the only type of epidemic: there 

may be mortality from other sources, such as influenza. A 

negative index may indicate that, when the COVID-19 

virus had not yet spread, the level of mortality in 2020 was 

less than in previous years or, similarly, that the lockdown 

did limit the spread of other viruses, other than COVID-

19, concerning previous years. 

Second Wave 

Summer 2020 represented a transition phase for the 

epidemic in Italy, in which the spread of the virus was 

very limited. The index of the epidemic for such a period 

is not significant and, hence, it is not recorded. 

A significant increase in the cases of infection was 

observed starting from the end of September. Differently 

from the wave that occurred during Spring, the spread of 

the virus was quite uniform on the whole national 

territory, probably because the lockdown was released 

everywhere. Starting from November 6th, the restrictive 

countermeasures to prevent the spread of the virus were 

differentiated in the Italian regions on basis of 21 

epidemic indicators. In particular, the growth of the 

epidemic reproduction number Rt was considered the 

main indicator from which the countermeasures were 

defined. Regions and autonomous provinces were 

classified into three areas (red, orange, and yellow) 

corresponding to three different risk scenarios. The 

classification was based on ordinances weekly released by 

the Italian Ministry of Health. 

For the nine most populated regions, we have 

calculated the relative index of epidemics Ie from 

September 28th to December 27th, by setting the single 

week as the period of observation, coherently with the 

timescale of the classification of the risk. The index is 

calculated from raw mortality data, released by ISTAT 

and available at http://www.istat.it/it/archivio. The results 

are illustrated in Fig. 6. 

By comparing Fig. 5 and 6, it is evident that the 

regional differences are much more limited. The highest 

impact of the second wave is recorded in Piemonte, where 

the relative index of epidemics reached a value higher 

than 4, which is however much lower than the peak 

reached in Lombardia during the first wave. The 

maximum value reached by Ie in Campania, Lombardia, 

and Veneto is about 3, a little lower than 3 in Puglia and 

about 2 in the other considered regions. The peak has been 

reached in the second half of November; only Veneto 

presents a trend very different from the other regions, 

characterized by a peak about in the middle of December. 

Recall that the relative index of epidemics depends 

upon the level of spread Y, as per Eq. (30). Regarding the 

Susceptible-Infectious-Recovered (SIR) model (Kermack 

and McKendrick, 1927), which details how a virus is 

transmitted from an infected person to a healthy one 

https://www.istat.it/it/archivio
http://demo.istat.it/
http://www.istat.it/it/archivio
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(Grassly and Fraser, 2006; 2008), Y could be associated 

with the ratio between the number of infected I and the 

number of susceptible S. Hence, we can conjecture that Y 

is strictly associated with the epidemic reproduction 

number Rt, defined in the SIR theory as the average 

number of secondary cases per infectious case in a 

population made up of both susceptible and non-

susceptible hosts. Figure 7 shows the weekly variation of 

Rt, estimated by the researchers of the Bruno Kessler 

Foundation on behalf of the Italian authorities (ISS). By 

comparing Fig. 6 and 7, it should be observed that the 

peaks in Ie are delayed by about 4 weeks concerning Rt and 

that Ie starts to decrease when Rt becomes lower than unity. 

The maximum values of Rt estimated for Lombardia 

and Piemonte is very close to one another, but the 

difference in terms of maximum Ie is noteworthy. Observe 

that the ascending branch of the Rt function for Piemonte 

is less steep than that for Lombardia. Hence, the value 

reached by Rt in Piemonte has been higher than unity for 

more weeks than in Lombardia: this might justify the 

difference in terms of Ie. Compare now the situation 

between Lombardia and Campania. The trend for Ie is 

quite similar, but this is not the case in terms of Rt. 

Concerning the theory presented here, this might be due to a 

different capacity of the regional health systems at curing the 

disease (parameter β) or to a different lethality of the virus 

(parameter σ). However, such finding might be as well a 

consequence of a non-correct estimation of the index Rt. 

Furthermore, it is of interest to notice that the Rt trend for 

Veneto is very similar to that of the other regions, apart from 

the fact that it remains higher than one, although only 

slightly, even in December; on the other hand, the trend for 

Ie is very different and the time delay between the peaks of Ie 

and Rt is of the order of 7 weeks. This difference may again 

be attributed to the particular way in which the local 

authorities from Veneto organized their actions.

 

 
 
Fig. 4: Graphical regressions in the epidemic Weibull plane of the probability of death as a function of the renormalized age for the 

Campania region in March. (a) Configuration “0”; (b) configuration “1” 

 

 
 
Fig. 5: Values of the relative index of epidemic Ie from January 2020 to June 2020 in the most populated Italian regions concerning 

ante COVID-19 conditions, which refer to average mortality in the same months of previous years (2015-2019) 
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Fig. 6: Weekly variation of the relative index of epidemic Ie from September 28th, 2020 to December 27th, 2020 in the most 

populated Italian regions. Ante COVID-19 conditions of comparison refer to average mortality in the same weeks of 

previous years (2015-2019) 

 

 

 

Fig. 7: Values of the epidemic reproduction index estimated by the researchers of the Bruno Kessler Foundation on behalf of the Italian 

ISS from August 24th, 2020 to December 27th, 2020. Calculations made on a weekly base 

 

The algorithm used by the researchers of the Bruno 

Kessler Foundation refers to the methodology described 

in the article available at 

https://arxiv.org/ftp/arxiv/papers/2003/2003.09320.pdf. 

A few examples of calculation can be found online 

at https://www.epicentro.iss.it/coronavirus/opendata. 

The week is set as the period of observation. The value 

of the new daily infections is not used for the 

calculation of Rt, whereas this is calculated on basis of 

symptomatic infected only. Since positive swabs of one 

day refer to dates of onset of symptoms, distributed in 

the two weeks before, calculation of Rt requires time to 

collect and select data. Furthermore, the values are 

strongly influenced by the quality of data (Azmon et al., 

2014; Gamado et al., 2014). Since Ie, on the other hand, 

is obtained from raw mortality data, its estimation is 

more objective. 

Therefore, it would be desirable to derive an analytical 

correlation between Y and Rt and, as a consequence of this, 

between Rt and Ie. In this case, the relative index of the 

epidemic could also be used as an instrument for assessing 

the goodness of the estimate of Rt. 

https://arxiv.org/ftp/arxiv/papers/2003/2003.09320.pdf
https://www.epicentro.iss.it/coronavirus/opendata
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Conclusion 

The presented statistical model allows the definition of 

an index of the epidemic, directly calculated from the 

records of the number of deaths, classified by age, during 

the period of the epidemic, and the comparison with the 

corresponding data in previous conditions. The model relies 

upon the definition of the nominal age, which represents the 

rescaling of the real age, statistically associated with the 

probability of developing a pathology that is critical for a 

certain level of the epidemic. One of the major advantages of 

this procedure is that it is not necessary to recognize which 

are deaths directly associated with one specific form of the 

epidemic, since only the rough mortality data, sorted by age, 

enter into the calculations. 

The model borrows concepts from consolidated 

models in the probabilistic mechanics of brittle materials, 

where the stress takes the place of the level of epidemic and 

the nominal age represents the size of the body. The 

probability of finding a crack of a given size in the material 

plays the role in the probability of developing a critical 

pathology in nominal life. The size effect experimentally 

verified in the mechanics of materials, derives from the fact 

that the larger the body, the higher the probability of finding 

a defect of critical size; this is conceptually similar to the 

increased probability of finding a critical pathology in an 

older than in a younger person. The criterion from linear 

elastic fracture mechanics, which correlates the applied stress 

with the critical size of the crack, has similarities with the 

criterion used to define the critical pathology for the level 

of the epidemic. The theoretical calculations provide a 

statistical law a` la Weibull, of the same type encountered 

in the mechanics of brittle materials, to describe the 

probability of death as a function of the level of the 

epidemic for any value of the nominal age. 

To verify the reliability of the model and to show its 

potentialities, the statistical data regarding deaths that 

occurred in the most populated regions of Italy during the 

two waves of the COVID-19 epidemic, have been 

processed and commented on. The model provides results 

in perfect agreement with the observations. Moreover, 

since it furnishes a quantitative estimate of the effects of 

the epidemic according to our capability of offering 

reliable cures, the theory could be developed for 

predictive purposes. To this aim, much research is still 

needed to provide, in particular, specific mathematical 

expressions, as a function of other more specialized state 

variables, for the various factors that influence the values 

reached by the relative index of epidemics. 
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